def test_derivatives():
    left_interp_indices = Variable(torch.LongTensor([[2, 3], [3, 4], [4, 5]])).repeat(5, 3, 1)
    left_interp_values = Variable(torch.Tensor([[1, 2], [0.5, 1], [1, 3]])).repeat(5, 3, 1)
    right_interp_indices = Variable(torch.LongTensor([[2, 3], [3, 4], [4, 5]])).repeat(5, 3, 1)
    right_interp_values = Variable(torch.Tensor([[1, 2], [0.5, 1], [1, 3]])).repeat(5, 3, 1)

    base_lazy_variable_mat = torch.randn(5, 6, 6)
    base_lazy_variable_mat = base_lazy_variable_mat.transpose(1, 2).matmul(base_lazy_variable_mat)
    test_matrix = Variable(torch.randn(1, 9, 4))

    base_lazy_variable = NonLazyVariable(Variable(base_lazy_variable_mat, requires_grad=True))
    interp_lazy_var = InterpolatedLazyVariable(base_lazy_variable, left_interp_indices, left_interp_values,
                                               right_interp_indices, right_interp_values)
    res = interp_lazy_var.matmul(test_matrix)
    res.sum().backward()

    base_lazy_variable2 = Variable(base_lazy_variable_mat, requires_grad=True)
    left_matrix = torch.Tensor([
        [0, 0, 1, 2, 0, 0],
        [0, 0, 0, 0.5, 1, 0],
        [0, 0, 0, 0, 1, 3],
        [0, 0, 1, 2, 0, 0],
        [0, 0, 0, 0.5, 1, 0],
        [0, 0, 0, 0, 1, 3],
        [0, 0, 1, 2, 0, 0],
        [0, 0, 0, 0.5, 1, 0],
        [0, 0, 0, 0, 1, 3],
    ]).repeat(5, 1, 1)
    actual = Variable(left_matrix).matmul(base_lazy_variable2).matmul(Variable(left_matrix).transpose(-1, -2))
    actual = actual.matmul(test_matrix)
    actual.sum().backward()

    assert approx_equal(base_lazy_variable.var.grad.data, base_lazy_variable2.grad.data)
Example #2
0
def test_batch_matmul():
    left_interp_indices = Variable(
        torch.LongTensor([[2, 3], [3, 4], [4, 5]]).repeat(5, 3, 1))
    left_interp_values = Variable(torch.Tensor([[1, 2], [0.5, 1],
                                                [1, 3]]).repeat(5, 3, 1),
                                  requires_grad=True)
    left_interp_values_copy = Variable(left_interp_values.data,
                                       requires_grad=True)
    right_interp_indices = Variable(
        torch.LongTensor([[0, 1], [1, 2], [2, 3]]).repeat(5, 3, 1))
    right_interp_values = Variable(torch.Tensor([[1, 2], [2, 0.5],
                                                 [1, 3]]).repeat(5, 3, 1),
                                   requires_grad=True)
    right_interp_values_copy = Variable(right_interp_values.data,
                                        requires_grad=True)

    base_lazy_variable_mat = torch.randn(5, 6, 6)
    base_lazy_variable_mat = base_lazy_variable_mat.transpose(
        -1, -2).matmul(base_lazy_variable_mat)
    base_variable = Variable(base_lazy_variable_mat, requires_grad=True)
    base_variable_copy = Variable(base_lazy_variable_mat, requires_grad=True)
    base_lazy_variable = NonLazyVariable(base_variable)

    test_matrix = torch.randn(5, 9, 4)

    interp_lazy_var = InterpolatedLazyVariable(base_lazy_variable,
                                               left_interp_indices,
                                               left_interp_values,
                                               right_interp_indices,
                                               right_interp_values)
    res = interp_lazy_var.matmul(Variable(test_matrix))

    left_matrix_comps = []
    right_matrix_comps = []
    for i in range(5):
        left_matrix_comp = Variable(torch.zeros(9, 6))
        right_matrix_comp = Variable(torch.zeros(9, 6))
        left_matrix_comp.scatter_(1, left_interp_indices[i],
                                  left_interp_values_copy[i])
        right_matrix_comp.scatter_(1, right_interp_indices[i],
                                   right_interp_values_copy[i])
        left_matrix_comps.append(left_matrix_comp.unsqueeze(0))
        right_matrix_comps.append(right_matrix_comp.unsqueeze(0))
    left_matrix = torch.cat(left_matrix_comps)
    right_matrix = torch.cat(right_matrix_comps)

    actual = left_matrix.matmul(base_variable_copy).matmul(
        right_matrix.transpose(-1, -2))
    actual = actual.matmul(Variable(test_matrix))
    assert approx_equal(res.data, actual.data)

    res.sum().backward()
    actual.sum().backward()

    assert approx_equal(base_variable.grad.data, base_variable_copy.grad.data)
    assert approx_equal(left_interp_values.grad.data,
                        left_interp_values_copy.grad.data)
    def test_matmul(self):
        left_interp_indices = Variable(
            torch.LongTensor([[2, 3], [3, 4], [4, 5]]).repeat(3, 1))
        left_interp_values = Variable(torch.Tensor([[1, 2], [0.5, 1],
                                                    [1, 3]]).repeat(3, 1),
                                      requires_grad=True)
        left_interp_values_copy = Variable(left_interp_values.data,
                                           requires_grad=True)
        right_interp_indices = Variable(
            torch.LongTensor([[0, 1], [1, 2], [2, 3]]).repeat(3, 1))
        right_interp_values = Variable(torch.Tensor([[1, 2], [2, 0.5],
                                                     [1, 3]]).repeat(3, 1),
                                       requires_grad=True)
        right_interp_values_copy = Variable(right_interp_values.data,
                                            requires_grad=True)

        base_lazy_variable_mat = torch.randn(6, 6)
        base_lazy_variable_mat = (
            base_lazy_variable_mat.t().matmul(base_lazy_variable_mat))
        base_variable = Variable(base_lazy_variable_mat, requires_grad=True)
        base_variable_copy = Variable(base_lazy_variable_mat,
                                      requires_grad=True)
        base_lazy_variable = NonLazyVariable(base_variable)

        test_matrix = torch.randn(9, 4)

        interp_lazy_var = InterpolatedLazyVariable(
            base_lazy_variable,
            left_interp_indices,
            left_interp_values,
            right_interp_indices,
            right_interp_values,
        )
        res = interp_lazy_var.matmul(Variable(test_matrix))

        left_matrix = Variable(torch.zeros(9, 6))
        right_matrix = Variable(torch.zeros(9, 6))
        left_matrix.scatter_(1, left_interp_indices, left_interp_values_copy)
        right_matrix.scatter_(1, right_interp_indices,
                              right_interp_values_copy)

        actual = (left_matrix.matmul(base_variable_copy).matmul(
            right_matrix.t()).matmul(Variable(test_matrix)))
        self.assertTrue(approx_equal(res.data, actual.data))

        res.sum().backward()
        actual.sum().backward()

        self.assertTrue(
            approx_equal(base_variable.grad.data,
                         base_variable_copy.grad.data))
        self.assertTrue(
            approx_equal(left_interp_values.grad.data,
                         left_interp_values_copy.grad.data))
    def test_matmul_batch(self):
        left_interp_indices = Variable(
            torch.LongTensor([[2, 3], [3, 4], [4, 5]])).repeat(5, 3, 1)
        left_interp_values = Variable(torch.Tensor([[1, 2], [0.5, 1],
                                                    [1, 3]])).repeat(5, 3, 1)
        right_interp_indices = Variable(
            torch.LongTensor([[0, 1], [1, 2], [2, 3]])).repeat(5, 3, 1)
        right_interp_values = Variable(torch.Tensor([[1, 2], [2, 0.5],
                                                     [1, 3]])).repeat(5, 3, 1)

        base_lazy_variable_mat = torch.randn(5, 6, 6)
        base_lazy_variable_mat = (base_lazy_variable_mat.transpose(
            1, 2).matmul(base_lazy_variable_mat))
        test_matrix = Variable(torch.randn(1, 9, 4))

        base_lazy_variable = NonLazyVariable(
            Variable(base_lazy_variable_mat, requires_grad=True))
        interp_lazy_var = InterpolatedLazyVariable(
            base_lazy_variable,
            left_interp_indices,
            left_interp_values,
            right_interp_indices,
            right_interp_values,
        )
        res = interp_lazy_var.matmul(test_matrix)

        left_matrix = torch.Tensor([
            [0, 0, 1, 2, 0, 0],
            [0, 0, 0, 0.5, 1, 0],
            [0, 0, 0, 0, 1, 3],
            [0, 0, 1, 2, 0, 0],
            [0, 0, 0, 0.5, 1, 0],
            [0, 0, 0, 0, 1, 3],
            [0, 0, 1, 2, 0, 0],
            [0, 0, 0, 0.5, 1, 0],
            [0, 0, 0, 0, 1, 3],
        ]).repeat(5, 1, 1)

        right_matrix = torch.Tensor([
            [1, 2, 0, 0, 0, 0],
            [0, 2, 0.5, 0, 0, 0],
            [0, 0, 1, 3, 0, 0],
            [1, 2, 0, 0, 0, 0],
            [0, 2, 0.5, 0, 0, 0],
            [0, 0, 1, 3, 0, 0],
            [1, 2, 0, 0, 0, 0],
            [0, 2, 0.5, 0, 0, 0],
            [0, 0, 1, 3, 0, 0],
        ]).repeat(5, 1, 1)
        actual = (left_matrix.matmul(base_lazy_variable_mat).matmul(
            right_matrix.transpose(-1, -2)).matmul(test_matrix.data))

        self.assertTrue(approx_equal(res.data, actual))
def test_matmul():
    left_interp_indices = Variable(torch.LongTensor([[2, 3], [3, 4], [4, 5]])).repeat(3, 1)
    left_interp_values = Variable(torch.Tensor([[1, 2], [0.5, 1], [1, 3]])).repeat(3, 1)
    right_interp_indices = Variable(torch.LongTensor([[0, 1], [1, 2], [2, 3]])).repeat(3, 1)
    right_interp_values = Variable(torch.Tensor([[1, 2], [2, 0.5], [1, 3]])).repeat(3, 1)

    base_lazy_variable_mat = torch.randn(6, 6)
    base_lazy_variable_mat = base_lazy_variable_mat.t().matmul(base_lazy_variable_mat)
    base_lazy_variable = NonLazyVariable(Variable(base_lazy_variable_mat))

    test_matrix = torch.randn(9, 4)
    test_matrix = torch.ones(9)

    interp_lazy_var = InterpolatedLazyVariable(base_lazy_variable, left_interp_indices, left_interp_values,
                                               right_interp_indices, right_interp_values)
    res = interp_lazy_var.matmul(Variable(test_matrix)).data

    left_matrix = torch.Tensor([
        [0, 0, 1, 2, 0, 0],
        [0, 0, 0, 0.5, 1, 0],
        [0, 0, 0, 0, 1, 3],
        [0, 0, 1, 2, 0, 0],
        [0, 0, 0, 0.5, 1, 0],
        [0, 0, 0, 0, 1, 3],
        [0, 0, 1, 2, 0, 0],
        [0, 0, 0, 0.5, 1, 0],
        [0, 0, 0, 0, 1, 3],
    ])
    right_matrix = torch.Tensor([
        [1, 2, 0, 0, 0, 0],
        [0, 2, 0.5, 0, 0, 0],
        [0, 0, 1, 3, 0, 0],
        [1, 2, 0, 0, 0, 0],
        [0, 2, 0.5, 0, 0, 0],
        [0, 0, 1, 3, 0, 0],
        [1, 2, 0, 0, 0, 0],
        [0, 2, 0.5, 0, 0, 0],
        [0, 0, 1, 3, 0, 0],
    ])
    actual = left_matrix.matmul(base_lazy_variable_mat).matmul(right_matrix.t()).matmul(test_matrix)
    assert approx_equal(res, actual)