def create_lazy_tensor(self): mat1 = make_random_mat(40, rank=5, batch_size=2) mat2 = make_random_mat(40, rank=5, batch_size=2) mat3 = make_random_mat(40, rank=5, batch_size=2) mat4 = make_random_mat(40, rank=5, batch_size=2) mat5 = make_random_mat(40, rank=5, batch_size=2) res = MulLazyTensor(RootLazyTensor(mat1), RootLazyTensor(mat2), RootLazyTensor(mat3), RootLazyTensor(mat4), RootLazyTensor(mat5)) return res.add_diag(torch.tensor(0.5))
def create_lazy_tensor(self): mat1 = make_random_mat(30, 3) mat2 = make_random_mat(30, 3) mat3 = make_random_mat(30, 3) mat4 = make_random_mat(30, 3) mat5 = make_random_mat(30, 3) res = MulLazyTensor(RootLazyTensor(mat1), RootLazyTensor(mat2), RootLazyTensor(mat3), RootLazyTensor(mat4), RootLazyTensor(mat5)) return res.add_diag(torch.tensor(1.0))
def test_mul_adding_another_variable(self): mat1 = make_random_mat(20, rank=4, batch_size=5) mat2 = make_random_mat(20, rank=4, batch_size=5) mat3 = make_random_mat(20, rank=4, batch_size=5) mat1_copy = mat1.clone().detach().requires_grad_(True) mat2_copy = mat2.clone().detach().requires_grad_(True) mat3_copy = mat3.clone().detach().requires_grad_(True) # Forward res = MulLazyTensor(RootLazyTensor(mat1), RootLazyTensor(mat2)) res = res * RootLazyTensor(mat3) actual = prod( [ mat1_copy.matmul(mat1_copy.transpose(-1, -2)), mat2_copy.matmul(mat2_copy.transpose(-1, -2)), mat3_copy.matmul(mat3_copy.transpose(-1, -2)), ] ) self.assertLess(torch.max(((res.evaluate() - actual) / actual).abs()), 0.01)
def test_matmul_mat_with_two_matrices(self): mat1 = make_random_mat(20, 5) mat2 = make_random_mat(20, 5) vec = torch.randn(20, 7, requires_grad=True) mat1_copy = mat1.clone().detach().requires_grad_(True) mat2_copy = mat2.clone().detach().requires_grad_(True) vec_copy = vec.clone().detach().requires_grad_(True) # Forward res = MulLazyTensor(RootLazyTensor(mat1), RootLazyTensor(mat2)).matmul(vec) actual = prod( [mat1_copy.matmul(mat1_copy.transpose(-1, -2)), mat2_copy.matmul(mat2_copy.transpose(-1, -2))] ).matmul(vec_copy) assert torch.max(((res - actual) / actual).abs()) < 0.01 # Backward res.sum().backward() actual.sum().backward() self.assertLess(torch.max(((mat1.grad - mat1_copy.grad) / mat1_copy.grad).abs()), 0.01) self.assertLess(torch.max(((mat2.grad - mat2_copy.grad) / mat2_copy.grad).abs()), 0.01) self.assertLess(torch.max(((vec.grad - vec_copy.grad) / vec_copy.grad).abs()), 0.01)
def test_batch_matmul_mat_with_five_matrices(self): mat1 = make_random_mat(20, rank=4, batch_size=5) mat2 = make_random_mat(20, rank=4, batch_size=5) mat3 = make_random_mat(20, rank=4, batch_size=5) mat4 = make_random_mat(20, rank=4, batch_size=5) mat5 = make_random_mat(20, rank=4, batch_size=5) vec = torch.randn(5, 20, 7, requires_grad=True) mat1_copy = mat1.clone().detach().requires_grad_(True) mat2_copy = mat2.clone().detach().requires_grad_(True) mat3_copy = mat3.clone().detach().requires_grad_(True) mat4_copy = mat4.clone().detach().requires_grad_(True) mat5_copy = mat5.clone().detach().requires_grad_(True) vec_copy = vec.clone().detach().requires_grad_(True) # Forward res = MulLazyTensor( RootLazyTensor(mat1), RootLazyTensor(mat2), RootLazyTensor(mat3), RootLazyTensor(mat4), RootLazyTensor(mat5) ).matmul(vec) actual = prod( [ mat1_copy.matmul(mat1_copy.transpose(-1, -2)), mat2_copy.matmul(mat2_copy.transpose(-1, -2)), mat3_copy.matmul(mat3_copy.transpose(-1, -2)), mat4_copy.matmul(mat4_copy.transpose(-1, -2)), mat5_copy.matmul(mat5_copy.transpose(-1, -2)), ] ).matmul(vec_copy) self.assertLess(torch.max(((res - actual) / actual).abs()), 0.01) # Backward res.sum().backward() actual.sum().backward() self.assertLess(torch.max(((mat1.grad - mat1_copy.grad) / mat1_copy.grad).abs()), 0.01) self.assertLess(torch.max(((mat2.grad - mat2_copy.grad) / mat2_copy.grad).abs()), 0.01) self.assertLess(torch.max(((mat3.grad - mat3_copy.grad) / mat3_copy.grad).abs()), 0.01) self.assertLess(torch.max(((mat4.grad - mat4_copy.grad) / mat4_copy.grad).abs()), 0.01) self.assertLess(torch.max(((mat5.grad - mat5_copy.grad) / mat5_copy.grad).abs()), 0.01) self.assertLess(torch.max(((vec.grad - vec_copy.grad) / vec_copy.grad).abs()), 0.01)
def test_diag(self): mat1 = make_random_mat(20, rank=4) mat2 = make_random_mat(20, rank=4) mat3 = make_random_mat(20, rank=4) mat1_copy = mat1.clone().detach().requires_grad_(True) mat2_copy = mat2.clone().detach().requires_grad_(True) mat3_copy = mat3.clone().detach().requires_grad_(True) # Forward res = MulLazyTensor(RootLazyTensor(mat1), RootLazyTensor(mat2), RootLazyTensor(mat3)).diag() actual = prod( [ mat1_copy.matmul(mat1_copy.transpose(-1, -2)), mat2_copy.matmul(mat2_copy.transpose(-1, -2)), mat3_copy.matmul(mat3_copy.transpose(-1, -2)), ] ).diag() assert torch.max(((res - actual) / actual).abs()) < 0.01
def test_batch_diag(self): mat1 = make_random_mat(20, rank=4, batch_size=5) mat2 = make_random_mat(20, rank=4, batch_size=5) mat3 = make_random_mat(20, rank=4, batch_size=5) mat1_copy = mat1.clone().detach().requires_grad_(True) mat2_copy = mat2.clone().detach().requires_grad_(True) mat3_copy = mat3.clone().detach().requires_grad_(True) # Forward res = MulLazyTensor(RootLazyTensor(mat1), RootLazyTensor(mat2), RootLazyTensor(mat3)).diag() actual = prod( [ mat1_copy.matmul(mat1_copy.transpose(-1, -2)), mat2_copy.matmul(mat2_copy.transpose(-1, -2)), mat3_copy.matmul(mat3_copy.transpose(-1, -2)), ] ) actual = torch.cat([actual[i].diag().unsqueeze(0) for i in range(5)]) self.assertLess(torch.max(((res - actual) / actual).abs()), 0.01)
def test_getitem(self): mat1 = make_random_mat(20, rank=4) mat2 = make_random_mat(20, rank=4) mat3 = make_random_mat(20, rank=4) mat1_copy = mat1.clone().detach().requires_grad_(True) mat2_copy = mat2.clone().detach().requires_grad_(True) mat3_copy = mat3.clone().detach().requires_grad_(True) # Forward res = MulLazyTensor(RootLazyTensor(mat1), RootLazyTensor(mat2), RootLazyTensor(mat3)) actual = prod( [ mat1_copy.matmul(mat1_copy.transpose(-1, -2)), mat2_copy.matmul(mat2_copy.transpose(-1, -2)), mat3_copy.matmul(mat3_copy.transpose(-1, -2)), ] ) self.assertLess(torch.max(((res[5, 3:5] - actual[5, 3:5]) / actual[5, 3:5]).abs()), 0.01) self.assertLess(torch.max(((res[3:5, 2:].evaluate() - actual[3:5, 2:]) / actual[3:5, 2:]).abs()), 0.01) self.assertLess(torch.max(((res[2:, 3:5].evaluate() - actual[2:, 3:5]) / actual[2:, 3:5]).abs()), 0.01)
def test_mul_adding_constant_mul(self): mat1 = make_random_mat(20, rank=4, batch_size=5) mat2 = make_random_mat(20, rank=4, batch_size=5) mat3 = make_random_mat(20, rank=4, batch_size=5) const = torch.ones(1, requires_grad=True) mat1_copy = mat1.clone().detach().requires_grad_(True) mat2_copy = mat2.clone().detach().requires_grad_(True) mat3_copy = mat3.clone().detach().requires_grad_(True) const_copy = const.clone().detach().requires_grad_(True) # Forward res = MulLazyTensor(RootLazyTensor(mat1), RootLazyTensor(mat2), RootLazyTensor(mat3)) res = res * const actual = ( prod( [ mat1_copy.matmul(mat1_copy.transpose(-1, -2)), mat2_copy.matmul(mat2_copy.transpose(-1, -2)), mat3_copy.matmul(mat3_copy.transpose(-1, -2)), ] ) * const_copy ) self.assertLess(torch.max(((res.evaluate() - actual) / actual).abs()), 0.01) # Forward res = MulLazyTensor(RootLazyTensor(mat1), RootLazyTensor(mat2), RootLazyTensor(mat3)) res = res * 2.5 actual = ( prod( [ mat1_copy.matmul(mat1_copy.transpose(-1, -2)), mat2_copy.matmul(mat2_copy.transpose(-1, -2)), mat3_copy.matmul(mat3_copy.transpose(-1, -2)), ] ) * 2.5 ) self.assertLess(torch.max(((res.evaluate() - actual) / actual).abs()), 0.01)
def create_lazy_tensor(self): mat1 = make_random_mat(6, rank=5, batch_size=2) mat2 = make_random_mat(6, rank=5, batch_size=2) res = MulLazyTensor(RootLazyTensor(mat1), RootLazyTensor(mat2)) return res.add_diag(torch.tensor(2.0))
def create_lazy_tensor(self): mat1 = make_random_mat(20, rank=5, batch_size=2) mat2 = make_random_mat(20, rank=5, batch_size=2) constant = torch.tensor(4.0) res = MulLazyTensor(RootLazyTensor(mat1), RootLazyTensor(mat2)) return res.mul(constant).add_diag(torch.tensor(2.0))
def create_lazy_tensor(self): mat1 = make_random_mat(6, 3) mat2 = make_random_mat(6, 3) res = MulLazyTensor(RootLazyTensor(mat1), RootLazyTensor(mat2)) return res.add_diag(torch.tensor(2.))