Example #1
0
def vis_grad(model, class_index, layer, image_path, size=[224, 224]):
    original_image = cv2.imread(image_path, 1)
    #plt.imshow(original_image)
    #plt.show()
    prep_img = preprocess_image(original_image, size)
    file_name_to_export = 'model' + '_classindex_' + str(
        class_index) + '-layer_' + str(layer)

    # Grad cam
    gcv2 = GradCam(model, target_layer=layer)
    # Generate cam mask
    cam = gcv2.generate_cam(prep_img, class_index, size)
    print('Grad cam completed')

    # Guided backprop
    GBP = GuidedBackprop(model)
    # Get gradients
    guided_grads = GBP.generate_gradients(prep_img, class_index)
    print('Guided backpropagation completed')

    # Guided Grad cam
    cam_gb = guided_grad_cam(cam, guided_grads)
    #save_gradient_images(cam_gb, file_name_to_export + '_GGrad_Cam')
    grayscale_cam_gb = convert_to_grayscale(cam_gb)
    #save_gradient_images(grayscale_cam_gb, file_name_to_export + '_GGrad_Cam_gray')
    print('Guided grad cam completed')
    cam_gb = trans(cam_gb)
    grayscale_cam_gb = trans(grayscale_cam_gb)

    return cam_gb, grayscale_cam_gb
Example #2
0
def vis_gradcam(model, class_index, layer, image_path, size=[224, 224]):

    original_image = cv2.imread(image_path, 1)
    #plt.imshow(original_image)
    #plt.show()
    prep_img = preprocess_image(original_image, size)
    file_name_to_export = 'model' + '_classindex_' + str(
        class_index) + '-layer_' + str(layer)

    # Grad cam
    gcv2 = GradCam(model, target_layer=layer)
    # Generate cam mask
    cam = gcv2.generate_cam(prep_img, class_index, size)
    print('Grad cam completed')

    #save_class_activation_on_image(original_image, cam, file_name_to_export)
    img_with_heatmap, activation_heatmap = act_on_img(original_image, cam,
                                                      size)

    return cam, activation_heatmap, img_with_heatmap
Example #3
0
    """
    cam_gb = np.multiply(grad_cam_mask, guided_backprop_mask)
    return cam_gb


if __name__ == '__main__':
    # Get params
    target_example = 0  # Snake
    (original_image, prep_img, target_class, file_name_to_export, pretrained_model) =\
        get_example_params(target_example)

    # Grad cam
    # gcv2 = GradCam(pretrained_model, target_layer=11)
    gcv2 = GradCam(pretrained_model, target_layer=7)
    # Generate cam mask
    cam = gcv2.generate_cam(prep_img, target_class)
    print('Grad cam completed')

    # Guided backprop
    GBP = GuidedBackprop(pretrained_model)
    # Get gradients
    guided_grads = GBP.generate_gradients(prep_img, target_class)
    print('Guided backpropagation completed')

    # Guided Grad cam
    cam_gb = guided_grad_cam(cam, guided_grads)
    save_gradient_images(cam_gb, file_name_to_export + '_GGrad_Cam')
    grayscale_cam_gb = convert_to_grayscale(cam_gb)
    save_gradient_images(grayscale_cam_gb,
                         file_name_to_export + '_GGrad_Cam_gray')
    print('Guided grad cam completed')
Example #4
0
    # print(pretrained_model)

    probs, label = predict2(image_path, pretrained_model.to(device))
    print(os.path.basename(image_path))
    print(probs)
    # print(*label, sep=", ")
    print([idx_to_class[idx] for idx in label], sep=", ")
    print("-" * 60 + "\n")

    # gradcam
    original_image = PIL.Image.open(image_path).convert('RGB')
    prep_img = process_image(original_image).unsqueeze(0)
    crop_image = only_crop_image(original_image)

    target_class = label[0]
    file_name_to_export = "butterfly_gradcam"

    # Grad cam
    grad_cam = GradCam(pretrained_model, target_layer=target_layer)
    # Generate cam mask
    cam = grad_cam.generate_cam(prep_img, target_class)

    # Save mask
    save_class_activation_images(
        crop_image, cam,
        os.path.join('heatmaps',
                     os.path.splitext(os.path.basename(model_dir))[0]),
        "{}_{}_{:.2f}".format(
            os.path.splitext(os.path.basename(image_path))[0],
            idx_to_class[label[0]], probs[0]))
        guided_backprop_mask (np_arr):Guided backprop mask
    """
    cam_gb = np.multiply(grad_cam_mask, guided_backprop_mask)
    return cam_gb


if __name__ == '__main__':
    # Get params
    target_example = 0  # Snake
    (original_image, prep_img, target_class, file_name_to_export, pretrained_model) =\
        get_params(target_example)

    # Grad cam
    gcv2 = GradCam(pretrained_model, target_layer=11)
    # Generate cam mask
    cam = gcv2.generate_cam(prep_img, target_class)
    print('Grad cam completed')

    # Guided backprop
    GBP = GuidedBackprop(pretrained_model)
    # Get gradients
    guided_grads = GBP.generate_gradients(prep_img, target_class)
    print('Guided backpropagation completed')

    # Guided Grad cam
    cam_gb = guided_grad_cam(cam, guided_grads)
    save_gradient_images(cam_gb, file_name_to_export + '_GGrad_Cam')
    grayscale_cam_gb = convert_to_grayscale(cam_gb)
    save_gradient_images(grayscale_cam_gb, file_name_to_export + '_GGrad_Cam_gray')
    print('Guided grad cam completed')