def __init__(self): super(CIFAR_Net, self).__init__() self.conv1 = nn.Conv2d(3, 64, 3, 1) self.conv1b = nn.Conv2d(64, 64, 3, 1) self.conv2 = nn.Conv2d(64, 128, 3, 1) self.conv2b = nn.Conv2d(128, 128, 3, 1) self.fc1 = nn.Linear(128 * 5 * 5, 512) self.fc2 = nn.Linear(512, 128) self.fc3 = nn.Linear(128, 10)
def __init__(self, vocab_size: int): super().__init__() # Embedding dimension: vocab_size + <unk>, <pad>, <eos>, <sos> self.emb = crb.Embedding(vocab_size + 4, 100) self.lstm = crb.LSTM(100, 100) self.pool = crb.AvgPool1d(256) self.fc1 = crb.Linear(100, 2)
def __init__(self, vocab_size, embedding_dim, pad_idx): super().__init__() # we will fix the dimensions here for the purpose of our experiments hidden_dim = 256 output_dim = 1 n_layers = 1 self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx = pad_idx) self.rnn = nn.LSTM(embedding_dim, hidden_dim, num_layers=n_layers) self.fc = nn.Linear(hidden_dim, output_dim)
def __init__(self, input_size=(1, 32, 32), n_layers=2, n_channels=25, factor=1.0, kernel_size=5): super().__init__() self.input_size = input_size # Layers grow at factor `factor` conv_layers = [] for i in range(n_layers): channels_in = int(n_channels * (factor ** (i - 1))) if i > 0 else \ input_size[0] channels_out = int(n_channels * (factor**i)) conv_layers.append( nn.Conv2d(channels_in, channels_out, kernel_size, 1, padding=2)) self.conv_layers = nn.ModuleList(conv_layers) self.conv_output = self.conv_block(torch.randn(1, *input_size)).size(1) self.fc = nn.Linear(self.conv_output, 10)
def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) self.fc1 = nn.Linear(9216, 128) self.fc2 = nn.Linear(128, 10)
def __init__(self, **_): super().__init__() self.fc1 = crb.Linear(104, 1)
def __init__(self, **_): super().__init__() self.fc1 = crb.Linear(104, 50) self.fc2 = crb.Linear(50, 2)
def __init__(self, **_): super().__init__() self.conv1 = crb.Conv2d(1, 16, 8, 2, padding=3) self.conv2 = crb.Conv2d(16, 32, 4, 2) self.fc1 = crb.Linear(32 * 4 * 4, 32) self.fc2 = crb.Linear(32, 10)