def taxonomy_hash(self): '''Read in the taxonomy and return as a hash of name: taxonomy, where taxonomy is an array of strings.''' gtns = Getaxnseq() with open(self.taxtastic_taxonomy_path()) as tax: with open(self.taxtastic_seqinfo_path()) as seqinfo: return gtns.read_taxtastic_taxonomy_and_seqinfo(tax, seqinfo)
def test_hello_world(self): with tempfile.NamedTemporaryFile( prefix='graftm_test_getaxnseq') as tmp_seq: with tempfile.NamedTemporaryFile( prefix='graftm_test_getaxnseq') as tmp_tax: Getaxnseq().write_taxonomy_and_seqinfo_files( { 'seq1': ['k__me', 'p__you'], 'seq2': [] }, tmp_tax.name, tmp_seq.name) expected = sorted([ ','.join(p) + '\n' for p in [['seqname', 'tax_id'], ['seq2', 'Root'], ['seq1', 'p__you']] ]) with open(tmp_seq.name) as f: self.assertEqual(expected, sorted(f.readlines())) expected = '\n'.join([ "tax_id,parent_id,rank,tax_name,root,rank_0,rank_1", "Root,Root,root,Root,Root,,", "k__me,Root,rank_0,k__me,Root,k__me,", "p__you,k__me,rank_1,p__you,Root,k__me,p__you" ]) + "\n" with open(tmp_tax.name) as f: self.assertEqual(expected, f.read())
def test_more_than_seven_levels(self): with tempfile.NamedTemporaryFile(prefix='graftm_test_getaxnseq') as tmp_seq: with tempfile.NamedTemporaryFile(prefix='graftm_test_getaxnseq') as tmp_tax: Getaxnseq().write_taxonomy_and_seqinfo_files({'seq1': string.split('k__me p__you c__came over for great spaghetti extra'), 'seq1.5': string.split('k__me p__you c__came over for great spaghetti'), 'seq2': []}, tmp_tax.name, tmp_seq.name) expected = "\n".join([','.join(p) for p in [['seqname','tax_id'], ['seq2','Root'], ['seq1','extra'], ['seq1.5','spaghetti']]])+"\n" self.assertEqual(expected, open(tmp_seq.name).read()) expected = '\n'.join(["tax_id,parent_id,rank,tax_name,root,rank_0,rank_1,rank_2,rank_3,rank_4,rank_5,rank_6,rank_7", "Root,Root,root,Root,Root,,,,,,,,", "k__me,Root,rank_0,k__me,Root,k__me,,,,,,,", "p__you,k__me,rank_1,p__you,Root,k__me,p__you,,,,,,", "c__came,p__you,rank_2,c__came,Root,k__me,p__you,c__came,,,,,", "over,c__came,rank_3,over,Root,k__me,p__you,c__came,over,,,,", "for,over,rank_4,for,Root,k__me,p__you,c__came,over,for,,,", "great,for,rank_5,great,Root,k__me,p__you,c__came,over,for,great,,", "spaghetti,great,rank_6,spaghetti,Root,k__me,p__you,c__came,over,for,great,spaghetti,", "extra,spaghetti,rank_7,extra,Root,k__me,p__you,c__came,over,for,great,spaghetti,extra"])+"\n" self.assertEqual(expected, open(tmp_tax.name).read())
def test_more_than_seven_levels(self): with tempfile.NamedTemporaryFile( prefix='graftm_test_getaxnseq') as tmp_seq: with tempfile.NamedTemporaryFile( prefix='graftm_test_getaxnseq') as tmp_tax: Getaxnseq().write_taxonomy_and_seqinfo_files( { 'seq1': string.split( 'k__me p__you c__came over for great spaghetti extra' ), 'seq1.5': string.split( 'k__me p__you c__came over for great spaghetti'), 'seq2': [] }, tmp_tax.name, tmp_seq.name) expected = "\n".join([ ','.join(p) for p in [['seqname', 'tax_id'], ['seq2', 'Root'], ['seq1', 'spaghetti'], ['seq1.5', 'spaghetti']] ]) + "\n" self.assertEqual(expected, open(tmp_seq.name).read()) expected = '\n'.join([ 'tax_id,parent_id,rank,tax_name,root,kingdom,phylum,class,order,family,genus,species', 'Root,Root,root,Root,Root,,,,,,,', 'k__me,Root,kingdom,k__me,Root,k__me,,,,,,', 'p__you,k__me,phylum,p__you,Root,k__me,p__you,,,,,', 'c__came,p__you,class,c__came,Root,k__me,p__you,c__came,,,,', 'over,c__came,order,over,Root,k__me,p__you,c__came,over,,,', 'for,over,family,for,Root,k__me,p__you,c__came,over,for,,', 'great,for,genus,great,Root,k__me,p__you,c__came,over,for,great,', 'spaghetti,great,species,spaghetti,Root,k__me,p__you,c__came,over,for,great,spaghetti', ]) + "\n" self.assertEqual(expected, open(tmp_tax.name).read())
def test_read_taxtastic_taxonomy_and_seqinfo(self): tax = StringIO('\n'.join(['tax_id,parent_id,rank,tax_name,root,kingdom,phylum,class,order,family,genus,species', 'Root,Root,root,Root,Root,,,,,,,', 'k__me,Root,kingdom,k__me,Root,k__me,,,,,,', 'p__you,k__me,phylum,p__you,Root,k__me,p__you,,,,,'])+"\n") seq = StringIO("\n".join([','.join(p) for p in [['seqname','tax_id'], ['seq2','Root'], ['seq1','p__you']]])+"\n") self.assertEqual({'seq1': ['k__me','p__you'], 'seq2': []}, Getaxnseq().read_taxtastic_taxonomy_and_seqinfo(tax, seq))
def __init__(self, tree, taxonomy, seqinfo=None): ''' Parameters ---------- tree : dendropy.Tree dendropy.Tree object taxonomy : string Path to a file containing taxonomy information about the tree, either in Greengenes or taxtastic format (seqinfo file must also be provided if taxonomy is in taxtastic format). seqinfo : string Path to a seqinfo file. This is a .csv file with the first column denoting the sequence name, and the second column, its most resolved taxonomic rank. ''' self.encountered_nodes = {} self.encountered_taxonomies = set() self.tree = tree # Read in taxonomy logging.info("Reading in taxonomy") if seqinfo: logging.info("Importing taxtastic taxonomy from files: %s and %s" % (taxonomy, seqinfo)) gtns = Getaxnseq() self.taxonomy = gtns.read_taxtastic_taxonomy_and_seqinfo( open(taxonomy), open(seqinfo)) else: try: logging.info("Reading Greengenes style taxonomy") self.taxonomy = GreenGenesTaxonomy.read_file(taxonomy).taxonomy except MalformedGreenGenesTaxonomyException: raise Exception("Failed to read taxonomy as a Greengenes \ formatted file. Was a taxtastic style \ taxonomy provided with no seqinfo file?")
def __init__(self, tree, taxonomy, seqinfo=None): ''' Parameters ---------- tree : dendropy.Tree dendropy.Tree object taxonomy : string Path to a file containing taxonomy information about the tree, either in Greengenes or taxtastic format (seqinfo file must also be provided if taxonomy is in taxtastic format). seqinfo : string Path to a seqinfo file. This is a .csv file with the first column denoting the sequence name, and the second column, its most resolved taxonomic rank. ''' self.encountered_nodes = {} self.encountered_taxonomies = set() self.tree = tree # Read in taxonomy logging.info("Reading in taxonomy") if seqinfo: logging.info("Importing taxtastic taxonomy from files: %s and %s" % (taxonomy, seqinfo)) gtns = Getaxnseq() self.taxonomy = gtns.read_taxtastic_taxonomy_and_seqinfo(open(taxonomy), open(seqinfo)) else: try: logging.info("Reading Greengenes style taxonomy") self.taxonomy = GreenGenesTaxonomy.read_file(taxonomy).taxonomy except MalformedGreenGenesTaxonomyException: raise Exception("Failed to read taxonomy as a Greengenes \ formatted file. Was a taxtastic style \ taxonomy provided with no seqinfo file?")
def test_hello_world(self): with tempfile.NamedTemporaryFile( prefix='graftm_test_getaxnseq') as tmp_seq: with tempfile.NamedTemporaryFile( prefix='graftm_test_getaxnseq') as tmp_tax: Getaxnseq().write_taxonomy_and_seqinfo_files( { 'seq1': ['k__me', 'p__you'], 'seq2': [] }, tmp_tax.name, tmp_seq.name) expected = "\n".join([ ','.join(p) for p in [['seqname', 'tax_id'], ['seq2', 'Root'], ['seq1', 'p__you']] ]) + "\n" self.assertEqual(expected, open(tmp_seq.name).read()) expected = '\n'.join([ 'tax_id,parent_id,rank,tax_name,root,kingdom,phylum,class,order,family,genus,species', 'Root,Root,root,Root,Root,,,,,,,', 'k__me,Root,kingdom,k__me,Root,k__me,,,,,,', 'p__you,k__me,phylum,p__you,Root,k__me,p__you,,,,,' ]) + "\n" self.assertEqual(expected, open(tmp_tax.name).read())
def update(self, **kwargs): ''' Update an existing GraftM package with new sequences and taxonomy. If no taxonomy is provided, attempt to decorate the new sequences with pre-existing taxonomy. Parameters ---------- input_sequence_path: str Path to FASTA file containing sequences to add to the update GraftM package input_taxonomy_path: str Taxonomy corresponding to the sequences in input_sequence_path. If None, then attempt to assign taxonomy by decorating the tree made out of all sequences. input_graftm_package_path: str Path to the directory of the GraftM package that is to be updated output_graftm_package_path: str Path to the directory to which the new GraftM package will be written to ''' input_sequence_path = kwargs.pop('input_sequence_path') input_taxonomy_path = kwargs.pop('input_taxonomy_path', None) input_graftm_package_path = kwargs.pop('input_graftm_package_path') output_graftm_package_path = kwargs.pop('output_graftm_package_path') threads = kwargs.pop( 'threads', UpdateDefaultOptions.threads) #TODO: add to user options if len(kwargs) > 0: raise Exception("Unexpected arguments detected: %s" % kwargs) logging.info("Reading previous GraftM package") old_gpkg = GraftMPackage.acquire(input_graftm_package_path) min_input_version = 3 if old_gpkg.version < min_input_version: raise InsufficientGraftMPackageVersion( "GraftM below version %s cannot be updated using the update function." % min_input_version + " Unaligned sequences are not included in these packages, therefore no new" " alignment/HMM/Tree can be created") new_gpkg = UpdatedGraftMPackage() new_gpkg.output = output_graftm_package_path new_gpkg.name = output_graftm_package_path.replace(".gpkg", "") ####################################### ### Collect all unaligned sequences ### logging.info("Concatenating unaligned sequence files") new_gpkg.unaligned_sequences = "%s_sequences.fa" % ( new_gpkg.name ) #TODO: replace hard-coded paths like this with tempfiles self._concatenate_file( [old_gpkg.unaligned_sequence_database_path(), input_sequence_path], new_gpkg.unaligned_sequences) ######################################################### ### Parse taxonomy info up front so errors come early ### if input_taxonomy_path: logging.info("Reading new taxonomy information") input_taxonomy = GreenGenesTaxonomy.read_file(input_taxonomy_path) original_taxonomy_hash = old_gpkg.taxonomy_hash() total_taxonomy_hash = original_taxonomy_hash.copy() total_taxonomy_hash.update(input_taxonomy.taxonomy) num_duplicate_taxonomies = len(total_taxonomy_hash) - \ len(input_taxonomy.taxonomy) - \ len(original_taxonomy_hash) logging.debug( "Found %i taxonomic definitions in common between the previous and updated taxonomies" % num_duplicate_taxonomies) if num_duplicate_taxonomies > 0: logging.warn( "Found %i taxonomic definitions in common between the previous and updated taxonomies. Using the updated taxonomy in each case." % num_duplicate_taxonomies) ############################### ### Re-construct alignments ### logging.info("Multiple sequence aligning all sequences") new_gpkg.aligned_sequences = "%s_mafft_alignment.fa" % (new_gpkg.name) self._align_sequences(new_gpkg.unaligned_sequences, new_gpkg.aligned_sequences, threads) ######################## ### Re-construct HMM ### logging.info("Creating HMM from alignment") new_gpkg.hmm = "%s.hmm" % (new_gpkg.name) new_gpkg.hmm_alignment = "%s_hmm_alignment.fa" % (new_gpkg.name) self._get_hmm_from_alignment(new_gpkg.aligned_sequences, new_gpkg.hmm, new_gpkg.hmm_alignment) ######################### ### Re-construct tree ### logging.info("Generating phylogenetic tree") new_gpkg.unrooted_tree = "%s.tre" % (new_gpkg.name) new_gpkg.unrooted_tree_log = "%s.tre.log" % (new_gpkg.name) new_gpkg.package_type, new_gpkg.hmm_length = self._pipe_type( old_gpkg.alignment_hmm_path()) new_gpkg.unrooted_gpkg_tree_log, new_gpkg.unrooted_gpkg_tree = \ self._build_tree(new_gpkg.hmm_alignment, new_gpkg.name, new_gpkg.package_type, self.fasttree) ############################################## ### Re-root and decorate tree if necessary ### if input_taxonomy_path: new_gpkg.gpkg_tree_log = new_gpkg.unrooted_tree_log new_gpkg.gpkg_tree = new_gpkg.unrooted_gpkg_tree else: logging.info("Finding taxonomy for new sequences") rerooter = Rerooter() old_tree = Tree.get(path=old_gpkg.reference_package_tree_path(), schema='newick') new_tree = Tree.get(path=new_gpkg.unrooted_gpkg_tree, schema='newick') old_tree = rerooter.reroot(old_tree) new_tree = rerooter.reroot(new_tree) # TODO: Shouldn't call an underscore method, eventually use # Rerooter instead. rerooted_tree = rerooter.reroot_by_tree(old_tree, new_tree) new_gpkg.gpkg_tree = "%s_gpkg.tree" % new_gpkg.name td = TreeDecorator(rerooted_tree, old_gpkg.taxtastic_taxonomy_path(), old_gpkg.taxtastic_seqinfo_path()) with tempfile.NamedTemporaryFile(suffix='tsv') as taxonomy: td.decorate(new_gpkg.gpkg_tree, taxonomy.name, True) total_taxonomy_hash = GreenGenesTaxonomy.read_file( taxonomy.name).taxonomy ################################ ### Generating tree log file ### logging.info("Generating phylogenetic tree log file") new_gpkg.gpkg_tree = "%s_gpkg.tree" % new_gpkg.name new_gpkg.gpkg_tree_log = "%s_gpkg.tree.log" % new_gpkg.name self._generate_tree_log_file(new_gpkg.unrooted_tree, new_gpkg.hmm_alignment, new_gpkg.gpkg_tree, new_gpkg.gpkg_tree_log, new_gpkg.package_type, self.fasttree) ################################ ### Creating taxtastic files ### logging.info("Writing new taxonomy files") new_gpkg.tt_seqinfo = "%s_seqinfo.csv" % new_gpkg.name new_gpkg.tt_taxonomy = "%s_taxonomy.csv" % new_gpkg.name gtns = Getaxnseq() gtns.write_taxonomy_and_seqinfo_files(total_taxonomy_hash, new_gpkg.tt_taxonomy, new_gpkg.tt_seqinfo) ###################### ### Compile refpkg ### logging.info("Compiling pplacer refpkg") new_gpkg.refpkg = "%s.refpkg" % (new_gpkg.name) refpkg = self._taxit_create(new_gpkg.name, new_gpkg.hmm_alignment, new_gpkg.gpkg_tree, new_gpkg.gpkg_tree_log, new_gpkg.tt_taxonomy, new_gpkg.tt_seqinfo, new_gpkg.refpkg, True) ##################################### ### Re-construct diamond database ### logging.info("Recreating DIAMOND DB") new_gpkg.diamond_database = "%s.dmnd" % (new_gpkg.name) self._create_dmnd_database(new_gpkg.unaligned_sequences, new_gpkg.name) #################### ### Compile gpkg ### logging.info("Compiling GraftM package") new_gpkg.name = "%s.gpkg" % new_gpkg.name GraftMPackageVersion3.compile( new_gpkg.name, new_gpkg.refpkg, new_gpkg.hmm, new_gpkg.diamond_database, self._define_range(new_gpkg.unaligned_sequences), new_gpkg.unaligned_sequences, search_hmm_files=old_gpkg.search_hmm_paths()) ################### ### Test it out ### logging.info("Testing newly updated GraftM package works") self._test_package(new_gpkg.name) logging.info("Finished")
def main(self, **kwargs): alignment = kwargs.pop('alignment',None) sequences = kwargs.pop('sequences',None) taxonomy = kwargs.pop('taxonomy',None) rerooted_tree = kwargs.pop('rerooted_tree',None) unrooted_tree = kwargs.pop('unrooted_tree',None) tree_log = kwargs.pop('tree_log', None) prefix = kwargs.pop('prefix', None) rerooted_annotated_tree = kwargs.pop('rerooted_annotated_tree', None) user_hmm = kwargs.pop('hmm', None) search_hmm_files = kwargs.pop('search_hmm_files',None) min_aligned_percent = kwargs.pop('min_aligned_percent',0.01) taxtastic_taxonomy = kwargs.pop('taxtastic_taxonomy', None) taxtastic_seqinfo = kwargs.pop('taxtastic_seqinfo', None) force_overwrite = kwargs.pop('force',False) graftm_package = kwargs.pop('graftm_package',False) dereplication_level = kwargs.pop('dereplication_level',False) threads = kwargs.pop('threads',5) if len(kwargs) > 0: raise Exception("Unexpected arguments detected: %s" % kwargs) seqio = SequenceIO() locus_name = (os.path.basename(sequences).split('.')[0] if sequences else os.path.basename(alignment).split('.')[0]) tmp = tempdir.TempDir() base = os.path.join(tmp.name, locus_name) insufficiently_aligned_sequences = [None] removed_sequence_names = [] tempfiles_to_close = [] if prefix: output_gpkg_path = prefix else: output_gpkg_path = "%s.gpkg" % locus_name if os.path.exists(output_gpkg_path): if force_overwrite: logging.warn("Deleting previous directory %s" % output_gpkg_path) shutil.rmtree(output_gpkg_path) else: raise Exception("Cowardly refusing to overwrite gpkg to already existing %s" % output_gpkg_path) logging.info("Building gpkg for %s" % output_gpkg_path) # Read in taxonomy somehow gtns = Getaxnseq() if rerooted_annotated_tree: logging.info("Building seqinfo and taxonomy file from input annotated tree") taxonomy_definition = TaxonomyExtractor().taxonomy_from_annotated_tree(\ Tree.get(path=rerooted_annotated_tree, schema='newick')) elif taxonomy: logging.info("Building seqinfo and taxonomy file from input taxonomy") taxonomy_definition = GreenGenesTaxonomy.read_file(taxonomy).taxonomy elif taxtastic_seqinfo and taxtastic_taxonomy: logging.info("Reading taxonomy from taxtastic taxonomy and seqinfo files") taxonomy_definition = gtns.read_taxtastic_taxonomy_and_seqinfo\ (open(taxtastic_taxonomy), open(taxtastic_seqinfo)) else: raise Exception("Taxonomy is required somehow e.g. by --taxonomy or --rerooted_annotated_tree") # Check for duplicates logging.info("Checking for duplicate sequences") dup = self._check_for_duplicate_sequence_names(sequences) if dup: raise Exception("Found duplicate sequence name '%s' in sequences input file" % dup) output_alignment_fh = tempfile.NamedTemporaryFile(prefix='graftm', suffix='.aln.faa') tempfiles_to_close.append(output_alignment_fh) output_alignment = output_alignment_fh.name if user_hmm: align_hmm = user_hmm else: align_hmm_fh = tempfile.NamedTemporaryFile(prefix='graftm', suffix='_align.hmm') tempfiles_to_close.append(align_hmm_fh) align_hmm = align_hmm_fh.name if alignment: dup = self._check_for_duplicate_sequence_names(alignment) if dup: raise Exception("Found duplicate sequence name '%s' in alignment input file" % dup) ptype = self._get_hmm_from_alignment(alignment, align_hmm, output_alignment) else: logging.info("Aligning sequences to create aligned FASTA file") ptype, output_alignment = self._align_and_create_hmm(sequences, alignment, user_hmm, align_hmm, output_alignment, threads) logging.info("Checking for incorrect or fragmented reads") insufficiently_aligned_sequences = self._check_reads_hit(open(output_alignment), min_aligned_percent) while len(insufficiently_aligned_sequences) > 0: logging.warn("One or more alignments do not span > %.2f %% of HMM" % (min_aligned_percent*100)) for s in insufficiently_aligned_sequences: logging.warn("Insufficient alignment of %s, not including this sequence" % s) sequences2_fh = tempfile.NamedTemporaryFile(prefix='graftm', suffix='.faa') tempfiles_to_close.append(sequences2_fh) sequences2 = sequences2_fh.name num_sequences = self._remove_sequences_from_alignment(insufficiently_aligned_sequences, sequences, sequences2) sequences = sequences2 if alignment: alignment2_fh = tempfile.NamedTemporaryFile(prefix='graftm', suffix='.aln.faa') tempfiles_to_close.append(alignment2_fh) alignment2 = alignment2_fh.name num_sequences = self._remove_sequences_from_alignment(insufficiently_aligned_sequences, alignment, alignment2) alignment = alignment2 for name in insufficiently_aligned_sequences: if rerooted_tree or rerooted_annotated_tree: logging.warning('''Sequence %s in provided alignment does not meet the --min_aligned_percent cutoff. This sequence will be removed from the tree in the final GraftM package. If you are sure these sequences are correct, turn off the --min_aligned_percent cutoff, provide it with a 0 (e.g. --min_aligned_percent 0) ''' % name) removed_sequence_names.append(name) logging.info("After removing %i insufficiently aligned sequences, left with %i sequences" % (len(insufficiently_aligned_sequences), num_sequences)) if num_sequences < 4: raise Exception("Too few sequences remaining in alignment after removing insufficiently aligned sequences: %i" % num_sequences) else: logging.info("Reconstructing the alignment and HMM from remaining sequences") output_alignment_fh = tempfile.NamedTemporaryFile(prefix='graftm', suffix='.aln.faa') tempfiles_to_close.append(output_alignment_fh) output_alignment = output_alignment_fh.name if not user_hmm: align_hmm_fh = tempfile.NamedTemporaryFile(prefix='graftm', suffix='.hmm') tempfiles_to_close.append(align_hmm_fh) align_hmm = align_hmm_fh.name ptype, output_alignment= self._align_and_create_hmm(sequences, alignment, user_hmm, align_hmm, output_alignment, threads) logging.info("Checking for incorrect or fragmented reads") insufficiently_aligned_sequences = self._check_reads_hit(open(output_alignment), min_aligned_percent) if not search_hmm_files: search_hmm_fh = tempfile.NamedTemporaryFile(prefix='graftm', suffix='_search.hmm') tempfiles_to_close.append(search_hmm_fh) search_hmm = search_hmm_fh.name self._create_search_hmm(sequences, taxonomy_definition, search_hmm, dereplication_level, threads) search_hmm_files = [search_hmm] # Make sure each sequence has been assigned a taxonomy: aligned_sequence_objects = seqio.read_fasta_file(output_alignment) unannotated = [] for s in aligned_sequence_objects: if s.name not in taxonomy_definition: unannotated.append(s.name) if len(unannotated) > 0: for s in unannotated: logging.error("Unable to find sequence '%s' in the taxonomy definition" % s) raise Exception("All sequences must be assigned a taxonomy, cannot continue") logging.debug("Looking for non-standard characters in aligned sequences") self._mask_strange_sequence_letters(aligned_sequence_objects, ptype) # Deduplicate sequences - pplacer cannot handle these logging.info("Deduplicating sequences") dedup = Deduplicator() deduplicated_arrays = dedup.deduplicate(aligned_sequence_objects) deduplicated_taxonomy = dedup.lca_taxonomy(deduplicated_arrays, taxonomy_definition) deduplicated_taxonomy_hash = {} for i, tax in enumerate(deduplicated_taxonomy): deduplicated_taxonomy_hash[deduplicated_arrays[i][0].name] = tax deduplicated_alignment_file = base+"_deduplicated_aligned.fasta" seqio.write_fasta_file([seqs[0] for seqs in deduplicated_arrays], deduplicated_alignment_file) logging.info("Removed %i sequences as duplicates, leaving %i non-identical sequences"\ % ((len(aligned_sequence_objects)-len(deduplicated_arrays)), len(deduplicated_arrays))) # Get corresponding unaligned sequences filtered_names=[] for list in [x for x in [x[1:] for x in deduplicated_arrays] if x]: for seq in list: filtered_names.append(seq.name) sequences2_fh = tempfile.NamedTemporaryFile(prefix='graftm', suffix='.faa') tempfiles_to_close.append(sequences2_fh) sequences2 = sequences2_fh.name # Create tree unless one was provided if not rerooted_tree and not rerooted_annotated_tree and not unrooted_tree: logging.debug("No tree provided") logging.info("Building tree") log_file, tre_file = self._build_tree(deduplicated_alignment_file, base, ptype, self.fasttree) no_reroot = False else: if rerooted_tree: logging.debug("Found unannotated pre-rerooted tree file %s" % rerooted_tree) tre_file=rerooted_tree no_reroot = True elif rerooted_annotated_tree: logging.debug("Found annotated pre-rerooted tree file %s" % rerooted_tree) tre_file=rerooted_annotated_tree no_reroot = True elif unrooted_tree: logging.info("Using input unrooted tree") tre_file = unrooted_tree no_reroot = False else: raise # Remove any sequences from the tree that are duplicates cleaner = DendropyTreeCleaner() tree = Tree.get(path=tre_file, schema='newick') for group in deduplicated_arrays: [removed_sequence_names.append(s.name) for s in group[1:]] cleaner.remove_sequences(tree, removed_sequence_names) # Ensure there is nothing amiss now as a user-interface thing cleaner.match_alignment_and_tree_sequence_ids(\ [g[0].name for g in deduplicated_arrays], tree) if tree_log: # User specified a log file, go with that logging.debug("Using user-specified log file %s" % tree_log) log_file = tree_log else: logging.info("Generating log file") log_file_tempfile = tempfile.NamedTemporaryFile(suffix='.tree_log', prefix='graftm') tempfiles_to_close.append(log_file_tempfile) log_file = log_file_tempfile.name tre_file_tempfile = tempfile.NamedTemporaryFile(suffix='.tree', prefix='graftm') tempfiles_to_close.append(tre_file_tempfile) tre_file = tre_file_tempfile.name with tempfile.NamedTemporaryFile(suffix='.tree', prefix='graftm') as f: # Make the newick file simple (ie. un-arb it) for fasttree. cleaner.write_fasttree_newick(tree, f) f.flush() self._generate_tree_log_file(f.name, deduplicated_alignment_file, tre_file, log_file, ptype, self.fasttree) # Create tax and seqinfo .csv files taxonomy_to_keep=[ seq.name for seq in [x for x in [x[0] for x in deduplicated_arrays] if x] ] refpkg = "%s.refpkg" % output_gpkg_path self.the_trash.append(refpkg) if taxtastic_taxonomy and taxtastic_seqinfo: logging.info("Creating reference package") refpkg = self._taxit_create(base, deduplicated_alignment_file, tre_file, log_file, taxtastic_taxonomy, taxtastic_seqinfo, refpkg, no_reroot) else: gtns = Getaxnseq() seq = base+"_seqinfo.csv" tax = base+"_taxonomy.csv" self.the_trash += [seq, tax] if rerooted_annotated_tree: logging.info("Building seqinfo and taxonomy file from input annotated tree") taxonomy_definition = TaxonomyExtractor().taxonomy_from_annotated_tree( Tree.get(path=rerooted_annotated_tree, schema='newick')) elif taxonomy: logging.info("Building seqinfo and taxonomy file from input taxonomy") taxonomy_definition = GreenGenesTaxonomy.read_file(taxonomy).taxonomy else: raise Exception("Programming error: Taxonomy is required somehow e.g. by --taxonomy or --rerooted_annotated_tree") taxonomy_definition = {x:taxonomy_definition[x] for x in taxonomy_definition if x in taxonomy_to_keep} gtns.write_taxonomy_and_seqinfo_files(taxonomy_definition, tax, seq) # Create the reference package logging.info("Creating reference package") refpkg = self._taxit_create(base, deduplicated_alignment_file, tre_file, log_file, tax, seq, refpkg, no_reroot) if sequences: # Run diamond makedb logging.info("Creating diamond database") if ptype == Create._PROTEIN_PACKAGE_TYPE: cmd = "diamond makedb --in '%s' -d '%s'" % (sequences, base) extern.run(cmd) diamondb = '%s.dmnd' % base elif ptype == Create._NUCLEOTIDE_PACKAGE_TYPE: diamondb = None else: raise Exception("Programming error") else: diamondb = None if sequences: # Get range max_range = self._define_range(sequences) else: max_range = self._define_range(alignment) # Compile the gpkg logging.info("Compiling gpkg") GraftMPackageVersion3.compile(output_gpkg_path, refpkg, align_hmm, diamondb, max_range, sequences, search_hmm_files=search_hmm_files) logging.info("Cleaning up") self._cleanup(self.the_trash) for tf in tempfiles_to_close: tf.close() # Test out the gpkg just to be sure. # # TODO: Use graftM through internal means rather than via extern. This # requires some refactoring so that graft() can be called easily with # sane defaults. logging.info("Testing gpkg package works") self._test_package(output_gpkg_path) logging.info("Finished\n")
def main(self, **kwargs): alignment = kwargs.pop('alignment', None) sequences = kwargs.pop('sequences', None) taxonomy = kwargs.pop('taxonomy', None) rerooted_tree = kwargs.pop('rerooted_tree', None) unrooted_tree = kwargs.pop('unrooted_tree', None) tree_log = kwargs.pop('tree_log', None) prefix = kwargs.pop('prefix', None) rerooted_annotated_tree = kwargs.pop('rerooted_annotated_tree', None) user_hmm = kwargs.pop('hmm', None) search_hmm_files = kwargs.pop('search_hmm_files', None) min_aligned_percent = kwargs.pop('min_aligned_percent', 0.01) taxtastic_taxonomy = kwargs.pop('taxtastic_taxonomy', None) taxtastic_seqinfo = kwargs.pop('taxtastic_seqinfo', None) force_overwrite = kwargs.pop('force', False) graftm_package = kwargs.pop('graftm_package', False) dereplication_level = kwargs.pop('dereplication_level', False) threads = kwargs.pop('threads', 5) if len(kwargs) > 0: raise Exception("Unexpected arguments detected: %s" % kwargs) seqio = SequenceIO() locus_name = (os.path.basename(sequences).split('.')[0] if sequences else os.path.basename(alignment).split('.')[0]) tmp = tempdir.TempDir() base = os.path.join(tmp.name, locus_name) insufficiently_aligned_sequences = [None] removed_sequence_names = [] if prefix: output_gpkg_path = prefix else: output_gpkg_path = "%s.gpkg" % locus_name if os.path.exists(output_gpkg_path): if force_overwrite: logging.warn("Deleting previous directory %s" % output_gpkg_path) shutil.rmtree(output_gpkg_path) else: raise Exception( "Cowardly refusing to overwrite gpkg to already existing %s" % output_gpkg_path) logging.info("Building gpkg for %s" % output_gpkg_path) # Read in taxonomy somehow gtns = Getaxnseq() if rerooted_annotated_tree: logging.info( "Building seqinfo and taxonomy file from input annotated tree") taxonomy_definition = TaxonomyExtractor().taxonomy_from_annotated_tree(\ Tree.get(path=rerooted_annotated_tree, schema='newick')) elif taxonomy: logging.info( "Building seqinfo and taxonomy file from input taxonomy") taxonomy_definition = GreenGenesTaxonomy.read_file( taxonomy).taxonomy elif taxtastic_seqinfo and taxtastic_taxonomy: logging.info( "Reading taxonomy from taxtastic taxonomy and seqinfo files") taxonomy_definition = gtns.read_taxtastic_taxonomy_and_seqinfo\ (open(taxtastic_taxonomy), open(taxtastic_seqinfo)) else: raise Exception( "Taxonomy is required somehow e.g. by --taxonomy or --rerooted_annotated_tree" ) # Check for duplicates logging.info("Checking for duplicate sequences") dup = self._check_for_duplicate_sequence_names(sequences) if dup: raise Exception( "Found duplicate sequence name '%s' in sequences input file" % dup) output_alignment = tempfile.NamedTemporaryFile(prefix='graftm', suffix='.aln.faa').name align_hmm = (user_hmm if user_hmm else tempfile.NamedTemporaryFile( prefix='graftm', suffix='_align.hmm').name) if alignment: dup = self._check_for_duplicate_sequence_names(alignment) if dup: raise Exception( "Found duplicate sequence name '%s' in alignment input file" % dup) ptype = self._get_hmm_from_alignment(alignment, align_hmm, output_alignment) else: logging.info("Aligning sequences to create aligned FASTA file") ptype, output_alignment = self._align_and_create_hmm( sequences, alignment, user_hmm, align_hmm, output_alignment, threads) logging.info("Checking for incorrect or fragmented reads") insufficiently_aligned_sequences = self._check_reads_hit( open(output_alignment), min_aligned_percent) while len(insufficiently_aligned_sequences) > 0: logging.warn( "One or more alignments do not span > %.2f %% of HMM" % (min_aligned_percent * 100)) for s in insufficiently_aligned_sequences: logging.warn( "Insufficient alignment of %s, not including this sequence" % s) _, sequences2 = tempfile.mkstemp(prefix='graftm', suffix='.faa') num_sequences = self._remove_sequences_from_alignment( insufficiently_aligned_sequences, sequences, sequences2) sequences = sequences2 if alignment: _, alignment2 = tempfile.mkstemp(prefix='graftm', suffix='.aln.faa') num_sequences = self._remove_sequences_from_alignment( insufficiently_aligned_sequences, alignment, alignment2) alignment = alignment2 for name in insufficiently_aligned_sequences: if rerooted_tree or rerooted_annotated_tree: logging.warning( '''Sequence %s in provided alignment does not meet the --min_aligned_percent cutoff. This sequence will be removed from the tree in the final GraftM package. If you are sure these sequences are correct, turn off the --min_aligned_percent cutoff, provide it with a 0 (e.g. --min_aligned_percent 0) ''' % name) removed_sequence_names.append(name) logging.info( "After removing %i insufficiently aligned sequences, left with %i sequences" % (len(insufficiently_aligned_sequences), num_sequences)) if num_sequences < 4: raise Exception( "Too few sequences remaining in alignment after removing insufficiently aligned sequences: %i" % num_sequences) else: logging.info( "Reconstructing the alignment and HMM from remaining sequences" ) output_alignment = tempfile.NamedTemporaryFile( prefix='graftm', suffix='.aln.faa').name if not user_hmm: align_hmm = tempfile.NamedTemporaryFile(prefix='graftm', suffix='.hmm').name ptype, output_alignment = self._align_and_create_hmm( sequences, alignment, user_hmm, align_hmm, output_alignment, threads) logging.info("Checking for incorrect or fragmented reads") insufficiently_aligned_sequences = self._check_reads_hit( open(output_alignment), min_aligned_percent) if not search_hmm_files: search_hmm = tempfile.NamedTemporaryFile(prefix='graftm', suffix='_search.hmm').name self._create_search_hmm(sequences, taxonomy_definition, search_hmm, dereplication_level, threads) search_hmm_files = [search_hmm] # Make sure each sequence has been assigned a taxonomy: aligned_sequence_objects = seqio.read_fasta_file(output_alignment) unannotated = [] for s in aligned_sequence_objects: if s.name not in taxonomy_definition: unannotated.append(s.name) if len(unannotated) > 0: for s in unannotated: logging.error( "Unable to find sequence '%s' in the taxonomy definition" % s) raise Exception( "All sequences must be assigned a taxonomy, cannot continue") logging.debug( "Looking for non-standard characters in aligned sequences") self._mask_strange_sequence_letters(aligned_sequence_objects, ptype) # Deduplicate sequences - pplacer cannot handle these logging.info("Deduplicating sequences") dedup = Deduplicator() deduplicated_arrays = dedup.deduplicate(aligned_sequence_objects) deduplicated_taxonomy = dedup.lca_taxonomy(deduplicated_arrays, taxonomy_definition) deduplicated_taxonomy_hash = {} for i, tax in enumerate(deduplicated_taxonomy): deduplicated_taxonomy_hash[deduplicated_arrays[i][0].name] = tax deduplicated_alignment_file = base + "_deduplicated_aligned.fasta" seqio.write_fasta_file([seqs[0] for seqs in deduplicated_arrays], deduplicated_alignment_file) logging.info("Removed %i sequences as duplicates, leaving %i non-identical sequences"\ % ((len(aligned_sequence_objects)-len(deduplicated_arrays)), len(deduplicated_arrays))) # Get corresponding unaligned sequences filtered_names = [] for list in [x for x in [x[1:] for x in deduplicated_arrays] if x]: for seq in list: filtered_names.append(seq.name) _, sequences2 = tempfile.mkstemp(prefix='graftm', suffix='.faa') # Create tree unless one was provided if not rerooted_tree and not rerooted_annotated_tree and not unrooted_tree: logging.debug("No tree provided") logging.info("Building tree") log_file, tre_file = self._build_tree(deduplicated_alignment_file, base, ptype, self.fasttree) no_reroot = False else: if rerooted_tree: logging.debug("Found unannotated pre-rerooted tree file %s" % rerooted_tree) tre_file = rerooted_tree no_reroot = True elif rerooted_annotated_tree: logging.debug("Found annotated pre-rerooted tree file %s" % rerooted_tree) tre_file = rerooted_annotated_tree no_reroot = True elif unrooted_tree: logging.info("Using input unrooted tree") tre_file = unrooted_tree no_reroot = False else: raise # Remove any sequences from the tree that are duplicates cleaner = DendropyTreeCleaner() tree = Tree.get(path=tre_file, schema='newick') for group in deduplicated_arrays: [removed_sequence_names.append(s.name) for s in group[1:]] cleaner.remove_sequences(tree, removed_sequence_names) # Ensure there is nothing amiss now as a user-interface thing cleaner.match_alignment_and_tree_sequence_ids(\ [g[0].name for g in deduplicated_arrays], tree) if tree_log: # User specified a log file, go with that logging.debug("Using user-specified log file %s" % tree_log) log_file = tree_log else: logging.info("Generating log file") log_file_tempfile = tempfile.NamedTemporaryFile( suffix='.tree_log', prefix='graftm') log_file = log_file_tempfile.name tre_file_tempfile = tempfile.NamedTemporaryFile( suffix='.tree', prefix='graftm') tre_file = tre_file_tempfile.name with tempfile.NamedTemporaryFile(suffix='.tree', prefix='graftm') as f: # Make the newick file simple (ie. un-arb it) for fasttree. cleaner.write_fasttree_newick(tree, f) f.flush() self._generate_tree_log_file(f.name, deduplicated_alignment_file, tre_file, log_file, ptype, self.fasttree) # Create tax and seqinfo .csv files taxonomy_to_keep = [ seq.name for seq in [x for x in [x[0] for x in deduplicated_arrays] if x] ] refpkg = "%s.refpkg" % output_gpkg_path self.the_trash.append(refpkg) if taxtastic_taxonomy and taxtastic_seqinfo: logging.info("Creating reference package") refpkg = self._taxit_create(base, deduplicated_alignment_file, tre_file, log_file, taxtastic_taxonomy, taxtastic_seqinfo, refpkg, no_reroot) else: gtns = Getaxnseq() seq = base + "_seqinfo.csv" tax = base + "_taxonomy.csv" self.the_trash += [seq, tax] if rerooted_annotated_tree: logging.info( "Building seqinfo and taxonomy file from input annotated tree" ) taxonomy_definition = TaxonomyExtractor( ).taxonomy_from_annotated_tree( Tree.get(path=rerooted_annotated_tree, schema='newick')) elif taxonomy: logging.info( "Building seqinfo and taxonomy file from input taxonomy") taxonomy_definition = GreenGenesTaxonomy.read_file( taxonomy).taxonomy else: raise Exception( "Programming error: Taxonomy is required somehow e.g. by --taxonomy or --rerooted_annotated_tree" ) taxonomy_definition = { x: taxonomy_definition[x] for x in taxonomy_definition if x in taxonomy_to_keep } gtns.write_taxonomy_and_seqinfo_files(taxonomy_definition, tax, seq) # Create the reference package logging.info("Creating reference package") refpkg = self._taxit_create(base, deduplicated_alignment_file, tre_file, log_file, tax, seq, refpkg, no_reroot) if sequences: # Run diamond makedb logging.info("Creating diamond database") if ptype == Create._PROTEIN_PACKAGE_TYPE: cmd = "diamond makedb --in '%s' -d '%s'" % (sequences, base) extern.run(cmd) diamondb = '%s.dmnd' % base elif ptype == Create._NUCLEOTIDE_PACKAGE_TYPE: diamondb = None else: raise Exception("Programming error") else: diamondb = None if sequences: # Get range max_range = self._define_range(sequences) else: max_range = self._define_range(alignment) # Compile the gpkg logging.info("Compiling gpkg") GraftMPackageVersion3.compile(output_gpkg_path, refpkg, align_hmm, diamondb, max_range, sequences, search_hmm_files=search_hmm_files) logging.info("Cleaning up") self._cleanup(self.the_trash) # Test out the gpkg just to be sure. # # TODO: Use graftM through internal means rather than via extern. This # requires some refactoring so that graft() can be called easily with # sane defaults. logging.info("Testing gpkg package works") self._test_package(output_gpkg_path) logging.info("Finished\n")
def update(self, **kwargs): ''' Update an existing GraftM package with new sequences and taxonomy. If no taxonomy is provided, attempt to decorate the new sequences with pre-existing taxonomy. Parameters ---------- input_sequence_path: str Path to FASTA file containing sequences to add to the update GraftM package input_taxonomy_path: str Taxonomy corresponding to the sequences in input_sequence_path. If None, then attempt to assign taxonomy by decorating the tree made out of all sequences. input_graftm_package_path: str Path to the directory of the GraftM package that is to be updated output_graftm_package_path: str Path to the directory to which the new GraftM package will be written to ''' input_sequence_path = kwargs.pop('input_sequence_path') input_taxonomy_path = kwargs.pop('input_taxonomy_path', None) input_graftm_package_path = kwargs.pop('input_graftm_package_path') output_graftm_package_path = kwargs.pop('output_graftm_package_path') threads = kwargs.pop('threads', UpdateDefaultOptions.threads) #TODO: add to user options if len(kwargs) > 0: raise Exception("Unexpected arguments detected: %s" % kwargs) logging.info("Reading previous GraftM package") old_gpkg = GraftMPackage.acquire(input_graftm_package_path) min_input_version = 3 if old_gpkg.version < min_input_version: raise InsufficientGraftMPackageVersion( "GraftM below version %s cannot be updated using the update function." % min_input_version + " Unaligned sequences are not included in these packages, therefore no new" " alignment/HMM/Tree can be created") new_gpkg = UpdatedGraftMPackage() new_gpkg.output = output_graftm_package_path new_gpkg.name = output_graftm_package_path.replace(".gpkg", "") ####################################### ### Collect all unaligned sequences ### logging.info("Concatenating unaligned sequence files") new_gpkg.unaligned_sequences = "%s_sequences.fa" % (new_gpkg.name) #TODO: replace hard-coded paths like this with tempfiles self._concatenate_file([old_gpkg.unaligned_sequence_database_path(), input_sequence_path], new_gpkg.unaligned_sequences) ######################################################### ### Parse taxonomy info up front so errors come early ### if input_taxonomy_path: logging.info("Reading new taxonomy information") input_taxonomy = GreenGenesTaxonomy.read_file(input_taxonomy_path) original_taxonomy_hash = old_gpkg.taxonomy_hash() total_taxonomy_hash = original_taxonomy_hash.copy() total_taxonomy_hash.update(input_taxonomy.taxonomy) num_duplicate_taxonomies = len(total_taxonomy_hash) - \ len(input_taxonomy.taxonomy) - \ len(original_taxonomy_hash) logging.debug("Found %i taxonomic definitions in common between the previous and updated taxonomies" % num_duplicate_taxonomies) if num_duplicate_taxonomies > 0: logging.warn("Found %i taxonomic definitions in common between the previous and updated taxonomies. Using the updated taxonomy in each case." % num_duplicate_taxonomies) ############################### ### Re-construct alignments ### logging.info("Multiple sequence aligning all sequences") new_gpkg.aligned_sequences = "%s_mafft_alignment.fa" % (new_gpkg.name) self._align_sequences(new_gpkg.unaligned_sequences, new_gpkg.aligned_sequences, threads) ######################## ### Re-construct HMM ### logging.info("Creating HMM from alignment") new_gpkg.hmm = "%s.hmm" % (new_gpkg.name) new_gpkg.hmm_alignment = "%s_hmm_alignment.fa" % (new_gpkg.name) self._get_hmm_from_alignment(new_gpkg.aligned_sequences, new_gpkg.hmm, new_gpkg.hmm_alignment) ######################### ### Re-construct tree ### logging.info("Generating phylogenetic tree") new_gpkg.unrooted_tree = "%s.tre" % (new_gpkg.name) new_gpkg.unrooted_tree_log = "%s.tre.log" % (new_gpkg.name) new_gpkg.package_type, new_gpkg.hmm_length = self._pipe_type(old_gpkg.alignment_hmm_path()) new_gpkg.unrooted_gpkg_tree_log, new_gpkg.unrooted_gpkg_tree = \ self._build_tree(new_gpkg.hmm_alignment, new_gpkg.name, new_gpkg.package_type, self.fasttree) ############################################## ### Re-root and decorate tree if necessary ### if input_taxonomy_path: new_gpkg.gpkg_tree_log = new_gpkg.unrooted_tree_log new_gpkg.gpkg_tree = new_gpkg.unrooted_gpkg_tree else: logging.info("Finding taxonomy for new sequences") rerooter = Rerooter() old_tree = Tree.get(path=old_gpkg.reference_package_tree_path(), schema='newick') new_tree = Tree.get(path=new_gpkg.unrooted_gpkg_tree, schema='newick') old_tree = rerooter.reroot(old_tree) new_tree = rerooter.reroot(new_tree) # TODO: Shouldn't call an underscore method, eventually use # Rerooter instead. rerooted_tree = rerooter.reroot_by_tree(old_tree, new_tree) new_gpkg.gpkg_tree = "%s_gpkg.tree" % new_gpkg.name td = TreeDecorator( rerooted_tree, old_gpkg.taxtastic_taxonomy_path(), old_gpkg.taxtastic_seqinfo_path()) with tempfile.NamedTemporaryFile(suffix='tsv') as taxonomy: td.decorate(new_gpkg.gpkg_tree, taxonomy.name, True) total_taxonomy_hash = GreenGenesTaxonomy.read_file(taxonomy.name).taxonomy ################################ ### Generating tree log file ### logging.info("Generating phylogenetic tree log file") new_gpkg.gpkg_tree = "%s_gpkg.tree" % new_gpkg.name new_gpkg.gpkg_tree_log = "%s_gpkg.tree.log" % new_gpkg.name self._generate_tree_log_file(new_gpkg.unrooted_tree, new_gpkg.hmm_alignment, new_gpkg.gpkg_tree, new_gpkg.gpkg_tree_log, new_gpkg.package_type, self.fasttree) ################################ ### Creating taxtastic files ### logging.info("Writing new taxonomy files") new_gpkg.tt_seqinfo = "%s_seqinfo.csv" % new_gpkg.name new_gpkg.tt_taxonomy = "%s_taxonomy.csv" % new_gpkg.name gtns = Getaxnseq() gtns.write_taxonomy_and_seqinfo_files( total_taxonomy_hash, new_gpkg.tt_taxonomy, new_gpkg.tt_seqinfo) ###################### ### Compile refpkg ### logging.info("Compiling pplacer refpkg") new_gpkg.refpkg = "%s.refpkg" % (new_gpkg.name) refpkg = self._taxit_create(new_gpkg.name, new_gpkg.hmm_alignment, new_gpkg.gpkg_tree, new_gpkg.gpkg_tree_log, new_gpkg.tt_taxonomy, new_gpkg.tt_seqinfo, new_gpkg.refpkg, True) ##################################### ### Re-construct diamond database ### logging.info("Recreating DIAMOND DB") new_gpkg.diamond_database = "%s.dmnd" % (new_gpkg.name) self._create_dmnd_database(new_gpkg.unaligned_sequences, new_gpkg.name) #################### ### Compile gpkg ### logging.info("Compiling GraftM package") new_gpkg.name = "%s.gpkg" % new_gpkg.name GraftMPackageVersion3.compile(new_gpkg.name, new_gpkg.refpkg, new_gpkg.hmm, new_gpkg.diamond_database, self._define_range(new_gpkg.unaligned_sequences), new_gpkg.unaligned_sequences, search_hmm_files=old_gpkg.search_hmm_paths()) ################### ### Test it out ### logging.info("Testing newly updated GraftM package works") self._test_package(new_gpkg.name) logging.info("Finished")
"cog_ids":cog_ids, "cog_classifications":cog_classifications, "tigrfam_ids":tigrfam_ids, "tigrfam_classifications":tigrfam_classifications, "source":"IMG", "swiss_prot": swiss_prot} arb_db[seq_name].update(tmp) arb_db[seq_id]["Classification"] = '_'.join(parsed_gff_file[seq_name].split()) parsed_gtdb_pfam_annotation = parse_pfam_annotation_hmmoutput(os.path.join(pfam_annotations, KO_ID+'_gtdb_pfam_annotation.domtblout.txt.gz')) parsed_unaligned_sequences = SeqIO.to_dict(SeqIO.parse(open(unaligned_sequences), "fasta")) parsed_aligned_sequences=SeqIO.to_dict(SeqIO.parse(open(aligned_sequences), "fasta")) gtns = Getaxnseq() parsed_taxonomy = {} ids =[] for id, tax in gtns.\ read_taxtastic_taxonomy_and_seqinfo(open(taxonomy_path), open(seqinfo_path)).iteritems(): ids.append(id) if '~' in id: gene_name, genome_id = id, id.split('~')[1] if genome_id in gene_id_to_tax: raise Exception("Genome ID encountered twice: %s" % genome_id) else: gene_id_to_tax[id] = genome_id
def _assign_taxonomy_with_diamond(self, base_list, db_search_results, graftm_package, graftm_files, diamond_performance_parameters): '''Run diamond to assign taxonomy Parameters ---------- base_list: list of str list of sequence block names db_search_results: list of DBSearchResult the result of running hmmsearches graftm_package: GraftMPackage object Diamond is run against this database graftm_files: GraftMFiles object Result files are written here diamond_performance_parameters : str extra args for DIAMOND Returns ------- list of 1. time taken for assignment 2. assignments i.e. dict of base_list entry to dict of read names to to taxonomies, or None if there was no hit detected. ''' runner = Diamond(graftm_package.diamond_database_path(), self.args.threads, self.args.evalue) taxonomy_definition = Getaxnseq().read_taxtastic_taxonomy_and_seqinfo\ (open(graftm_package.taxtastic_taxonomy_path()), open(graftm_package.taxtastic_seqinfo_path())) results = {} # For each of the search results, for i, search_result in enumerate(db_search_results): if search_result.hit_fasta() is None: sequence_id_to_taxonomy = {} else: sequence_id_to_hit = {} # Run diamond logging.debug("Running diamond on %s" % search_result.hit_fasta()) diamond_result = runner.run( search_result.hit_fasta(), UnpackRawReads.PROTEIN_SEQUENCE_TYPE, daa_file_basename=graftm_files. diamond_assignment_output_basename(base_list[i]), extra_args=diamond_performance_parameters) for res in diamond_result.each([ SequenceSearchResult.QUERY_ID_FIELD, SequenceSearchResult.HIT_ID_FIELD ]): if res[0] in sequence_id_to_hit: # do not accept duplicates if sequence_id_to_hit[res[0]] != res[1]: raise Exception( "Diamond unexpectedly gave two hits for a single query sequence for %s" % res[0]) else: sequence_id_to_hit[res[0]] = res[1] # Extract taxonomy of the best hit, and add in the no hits sequence_id_to_taxonomy = {} for seqio in SequenceIO().read_fasta_file( search_result.hit_fasta()): name = seqio.name if name in sequence_id_to_hit: # Add Root; to be in line with pplacer assignment method sequence_id_to_taxonomy[name] = [ 'Root' ] + taxonomy_definition[sequence_id_to_hit[name]] else: # picked up in the initial search (by hmmsearch, say), but diamond misses it sequence_id_to_taxonomy[name] = ['Root'] results[base_list[i]] = sequence_id_to_taxonomy return results