def setUpClass(cls): client = grakn.client.GraknClient(uri="localhost:48555") cls.session = client.session(keyspace="test_schema") entity_query = "match $x isa company, has name 'Google'; get;" cls._tx = cls.session.transaction().write() neighbour_sample_sizes = (4, 3) sampling_method = ordered.ordered_sample samplers = [] for sample_size in neighbour_sample_sizes: samplers.append( samp.Sampler(sample_size, sampling_method, limit=sample_size * 2)) grakn_thing = next(cls._tx.query(entity_query)).get('x') thing = neighbour.build_thing(grakn_thing) context_builder = builder.ContextBuilder(samplers) cls.context = context_builder.build(cls._tx, thing)
def test_integration(self): client = grakn.client.GraknClient(uri=TEST_URI) session = client.session(keyspace=TEST_KEYSPACE) tx = session.transaction().write() print("================= THINGS ======================") te = ex.TraversalExecutor(tx) schema_concept_types = te.get_schema_concept_types( encode.GET_THING_TYPES_QUERY, include_implicit=True, include_metatypes=False) labels = trv.labels_from_types(schema_concept_types) print(list(labels)) schema_concept_types = te.get_schema_concept_types( encode.GET_THING_TYPES_QUERY, include_implicit=True, include_metatypes=False) super_types = trv.get_sups_labels_per_type(schema_concept_types, include_self=True, include_metatypes=False) print("==== super types ====") [print(type, super_types) for type, super_types in super_types.items()] print("================= ROLES ======================") schema_concept_types = te.get_schema_concept_types( encode.GET_ROLE_TYPES_QUERY, include_implicit=True, include_metatypes=False) labels = trv.labels_from_types(schema_concept_types) print(list(labels)) schema_concept_types = te.get_schema_concept_types( encode.GET_ROLE_TYPES_QUERY, include_implicit=True, include_metatypes=False) super_types = trv.get_sups_labels_per_type(schema_concept_types, include_self=True, include_metatypes=False) print("==== super types ====") [print(type, super_types) for type, super_types in super_types.items()]
import grakn.client training_keyspace= "dm_graph" neighbour_sample_sizes= [7,2,2] features_size= 10 example_things_features_size= 5 aggregated_size= 20 embedding_size= 32 batch_size= 10 learning_rate= .1 num_classes= URI = "172.16.253.242:48555" client = grakn.client.GraknClient(uri=URI) session = client.session(keyspace=training_keyspace) transaction = session.transaction().write() kgcn = model.KGCN(neighbour_sample_sizes, features_size, example_things_features_size, aggregated_size, embedding_size, transaction, batch_size) optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate) classifier = classify.SupervisedKGCNMultiClassSingleLabelClassifier(kgcn, optimizer, num_classes,
def setUp(self): client = grakn.client.GraknClient(uri=TEST_URI) session = client.session(keyspace=TEST_KEYSPACE) self._tx = session.transaction().write()
def test_encode(self): client = grakn.client.GraknClient(uri=TEST_URI) session = client.session(keyspace=TEST_KEYSPACE) tx = session.transaction().write() encoder = encode.Encoder(tx) placeholders = [{ 'role_type': tf.placeholder(dtype=tf.string, shape=(None, 1)), 'role_direction': tf.placeholder(dtype=tf.int64, shape=(None, 1)), 'neighbour_type': tf.placeholder(dtype=tf.string, shape=(None, 1)), 'neighbour_data_type': tf.placeholder(dtype=tf.string, shape=(None, 1)), 'neighbour_value_long': tf.placeholder(dtype=tf.int64, shape=(None, 1)), 'neighbour_value_double': tf.placeholder(dtype=tf.float32, shape=(None, 1)), 'neighbour_value_boolean': tf.placeholder(dtype=tf.int64, shape=(None, 1)), 'neighbour_value_date': tf.placeholder(dtype=tf.int64, shape=(None, 1)), 'neighbour_value_string': tf.placeholder(dtype=tf.string, shape=(None, 1)) }] encoded_output = encoder(placeholders) example_arrays = { 'role_type': np.full((4, 1), fill_value='employee', dtype=np.dtype('U50')), 'role_direction': np.full((4, 1), fill_value=0, dtype=np.int), 'neighbour_type': np.full((4, 1), fill_value='person', dtype=np.dtype('U50')), 'neighbour_data_type': np.full((4, 1), fill_value='', dtype=np.dtype('U10')), 'neighbour_value_long': np.full((4, 1), fill_value=0, dtype=np.int), 'neighbour_value_double': np.full((4, 1), fill_value=0.0, dtype=np.float), 'neighbour_value_boolean': np.full((4, 1), fill_value=0, dtype=np.int), 'neighbour_value_date': np.full((4, 1), fill_value=0, dtype=np.int), 'neighbour_value_string': np.full((4, 1), fill_value='', dtype=np.dtype('U50')) } feed_dict = { placeholder: example_arrays[placeholder_name] for placeholder_name, placeholder in placeholders[0].items() } init_global = tf.global_variables_initializer() init_tables = tf.tables_initializer() tf_session = tf.Session() tf_session.run(init_global) tf_session.run(init_tables) tf_session.run(encoded_output, feed_dict=feed_dict)
def setUp(self): client = grakn.client.GraknClient(uri="localhost:48555") session = client.session(keyspace="test_schema") self._tx = session.transaction().write()
def setUpClass(cls): client = grakn.client.GraknClient(uri=TEST_URI) cls.session = client.session(keyspace=cls.keyspace)