Example #1
0
def generate_parameters(N, M, nb_local_community, p, carrying_capacity_b,
                        graph_model):

    r = stats.uniform.rvs(
        loc=0, scale=1, size=M
    )  # growth rate, uniform distribution between 0 and 1, vector of size M
    while np.any(r == 0.):
        for index, value in enumerate(r):
            if value == 0.:
                r[index] = stats.uniform.rvs(loc=0, scale=1)

    # k: carrying capacity
    k = stats.beta.rvs(a=1, b=carrying_capacity_b, loc=0, scale=1, size=M)

    # Scaling of carrying capacity k between 1 and 100
    k = 1. + k * 100

    # Interaction matrix A
    ## Random Erdös-Renyi model

    if graph_model == "ER":
        A = graph.generate_random_graph(N, p)
    elif graph_model == "WS":
        A = graph.generate_watts_strogatz_graph(N, p)
    else:
        raise ValueError("Unknown graph model.")

    # Initial abundance of species x_0
    x_0 = stats.uniform.rvs(
        loc=10, scale=90, size=(nb_local_community,
                                M))  # Uniform distribution between 10 and 100

    return r, k, A, x_0
Example #2
0
def main():
    """
    Generates new graphs
    """

    parser = argparse.ArgumentParser()
    parser.add_argument("-p", help="path to data directory", type=str)
    parser.add_argument("-nn", help="number of nodes in new graph", type=int)
    parser.add_argument("-od",
                        help="number of OD pairs in new graph",
                        type=int)

    #TODO: manage edge cases when n_OD is too large for instance

    args = parser.parse_args()
    path = os.path.join('/Users/lucasfuentes/icu/notebooks/Data_comparison',
                        args.p)

    _, _ = generate_random_graph(args.nn, args.od, path)

    return
Example #3
0
import random
import graph

n = 20
m = 30

G = graph.generate_random_graph(n, m)
(V, E) = G

# print(G)
print("Number of edges is {}, we want {}".format(len(E), m))

start = random.choice(list(V))
stop = random.choice(list(V))

cur = start

print("Starting at {}".format(cur))
if len(graph.neighbours_of(G, cur)) == 0:
    raise Exception("Bad luck, {} has no neighbours".format(cur))

num_steps = 0
max_num_steps = 1000

history = [cur]

while cur != stop and num_steps < max_num_steps:
    num_steps += 1

    # pick a neighbour of cur at random
    neighbours = graph.neighbours_of(G, cur)
Example #4
0
        num_edges = int(argv.pop(0))
    elif token == "--start":
        start = int(argv.pop(0))
    elif token == "--stop":
        stop = int(argv.pop(0))
    elif token == "--max_steps":
        max_num_steps = int(argv.pop(0))
    else:
        print("Bad argument {}".format(token))
        sys.exit(1)

# use supplied seed if given
if seed is not None:
    random.seed(seed)

G = graph.generate_random_graph(num_vertices, num_edges)
dot_file_name = "walk-graph.dot"
# display.write_dot_desc(G, dot_file_name)

(V, E) = G

# start and stop vertices
if start is None:
    start = random.choice(list(V))

if stop is None:
    stop = random.choice(list(V))

# rendering attributes
attr = {"vertex_color":{}, "edge_color":{}}
            A.append(vertex_id)
        else:
            B.append(vertex_id)
    return A,B
        
def random_contraction(g):
    A,B = Vertex(),Vertex()
    A_ids,B_ids = [],[]
    while len(g.get_vertices()) > 2:
        print("num verticies",g.num_vertices)
        time.sleep(1)
        edge = random.choice(g.get_all_edges())
        start_edges = g.get_edges(edge[0])
        end_edges = g.get_edges(edge[1])
        g.remove_vertex(edge[0])
        removed_vertex,removed_edges = g.remove_vertex(edge[1])
        print("num verticies",g.num_vertices)
        A,B = choice(removed_vertex,removed_edges,A,B)
        g.add_vertex(edge[0])
        start_edges = update_edges(edge,start_edges)
        end_edges = update_edges(edge,end_edges)
        for edge in start_edges:
            g.add_edge(edge[0],edge[1])
        for edge in end_edges:
            g.add_edge(edge[0],edge[1])
    return A,B,g.get_all_edges()

A,B,edges = random_contraction(generate_random_graph())
import code
code.interact(local=locals())
            B.append(vertex_id)
    return A, B


def random_contraction(g):
    A, B = Vertex(), Vertex()
    A_ids, B_ids = [], []
    while len(g.get_vertices()) > 2:
        print("num verticies", g.num_vertices)
        time.sleep(1)
        edge = random.choice(g.get_all_edges())
        start_edges = g.get_edges(edge[0])
        end_edges = g.get_edges(edge[1])
        g.remove_vertex(edge[0])
        removed_vertex, removed_edges = g.remove_vertex(edge[1])
        print("num verticies", g.num_vertices)
        A, B = choice(removed_vertex, removed_edges, A, B)
        g.add_vertex(edge[0])
        start_edges = update_edges(edge, start_edges)
        end_edges = update_edges(edge, end_edges)
        for edge in start_edges:
            g.add_edge(edge[0], edge[1])
        for edge in end_edges:
            g.add_edge(edge[0], edge[1])
    return A, B, g.get_all_edges()


A, B, edges = random_contraction(generate_random_graph())
import code
code.interact(local=locals())