Example #1
0
    def __init__(self, bzrc):
        self.bzrc = bzrc
        self.constants = self.bzrc.get_constants()
        self.commands = []
        mytanks, othertanks, flags, shots = self.bzrc.get_lots_o_stuff()
        self.numoftanks = len(mytanks)
        self.timeuntilshot = [0]*self.numoftanks
        self.ismoving = [True]*self.numoftanks

        # For PD Control
        self.old_angle = [0]*self.numoftanks
        self.old_speed = [0]*self.numoftanks


        # For visibility graph
        self.final_goals = [0]*self.numoftanks
        self.graph = VisibilityGraph(self.bzrc)

        self.fields = []
        self.goal_paths = []
        for i in xrange(self.numoftanks):
            self.fields.append(PotentialFields(self.bzrc))
            self.goal_paths.append(Path())

        obstacles = self.bzrc.get_obstacles()
        for flag in flags:
            if flag.color == self.constants['team']:
                self.base = {'x':flag.x, 'y':flag.y}
Example #2
0
class Agent(object):
    """Class handles all command and control logic for a teams tanks."""

    def __init__(self, bzrc):
        self.bzrc = bzrc
        self.constants = self.bzrc.get_constants()
        self.commands = []
        mytanks, othertanks, flags, shots = self.bzrc.get_lots_o_stuff()
        self.numoftanks = len(mytanks)
        self.timeuntilshot = [0]*self.numoftanks
        self.ismoving = [True]*self.numoftanks

        # For PD Control
        self.old_angle = [0]*self.numoftanks
        self.old_speed = [0]*self.numoftanks


        # For visibility graph
        self.final_goals = [0]*self.numoftanks
        self.graph = VisibilityGraph(self.bzrc)

        self.fields = []
        self.goal_paths = []
        for i in xrange(self.numoftanks):
            self.fields.append(PotentialFields(self.bzrc))
            self.goal_paths.append(Path())

        obstacles = self.bzrc.get_obstacles()
        for flag in flags:
            if flag.color == self.constants['team']:
                self.base = {'x':flag.x, 'y':flag.y}

    def tick(self, time_diff):
        """Some time has passed; decide what to do next."""
        mytanks, othertanks, flags, shots = self.bzrc.get_lots_o_stuff()
        self.mytanks = mytanks
        self.othertanks = othertanks
        self.flags = flags
        self.shots = shots
        self.enemies = [tank for tank in othertanks if tank.color !=
                        self.constants['team']]

        self.commands = []

        for tank in mytanks:
            self.create_command(tank, time_diff)
            #self.attack_enemies(tank)

        results = self.bzrc.do_commands(self.commands)

    def attack_enemies(self, tank):
        """Find the closest enemy and chase it, shooting as you go."""
        best_enemy = None
        best_dist = 2 * float(self.constants['worldsize'])
        for enemy in self.enemies:
            if enemy.status != 'alive':
                continue
            dist = math.sqrt((enemy.x - tank.x)**2 + (enemy.y - tank.y)**2)
            if dist < best_dist:
                best_dist = dist
                best_enemy = enemy
        if best_enemy is None:
            command = Command(tank.index, 0, 0, False)
            self.commands.append(command)
        else:
            self.move_to_position(tank, best_enemy.x, best_enemy.y)

    def move_to_position(self, tank, target_x, target_y):
        """Set command to move to given coordinates."""
        target_angle = math.atan2(target_y - tank.y,
                                  target_x - tank.x)
        relative_angle = self.normalize_angle(target_angle - tank.angle)
        command = Command(tank.index, 1, 2 * relative_angle, True)
        self.commands.append(command)

    def create_command(self, tank, time_diff):
        """Set command to move to given coordinates."""

        speed = 1
        angvel = 0
        shoot = True
        kp = 1
        kd = -.07
        goal_threshold = 15.0

        if time_diff <= 0:
            return

        # assign goal to tank
        if tank.flag == '-':
            closest_goal =  self.get_closest_goal(tank)
            if closest_goal is None:
                self.attack_enemies(tank)
                return
            goal_x, goal_y = closest_goal
        else:
            goal_x, goal_y = self.base['x'], self.base['y']

        # see if we need a new visibility graph and path
        new_goal = (goal_x, goal_y)
        if self.final_goals[tank.index] != new_goal:
            self.final_goals[tank.index] = new_goal
            start = (tank.x, tank.y)
            end = self.final_goals[tank.index]
            self.graph.createTankGraph(start, end)
            #print 1
            search_alg = search.AStar(self.graph)
            #print 2
            new_path = search_alg.run(start, end)
            #print 3
            self.graph.displayGraph()
            self.goal_paths[tank.index].set_path(new_path)
            #print 4

        # get potential field at this location for the calculated goal
        goal = self.goal_paths[tank.index].get_next(tank.x, tank.y, goal_threshold)
        field = self.fields[tank.index]
        field.set_goal(goal[0], goal[1])
        x, y = field.calculate_potential(tank.x, tank.y)

        # PD Controller - angle
        target_angle = math.atan2(y, x)
        angle_remaining = self.angle_remaining(tank.angle, target_angle)
        angvel = self.pd_angvel(tank, target_angle, time_diff)

        if angvel > 1:
            angvel = 1
        elif angvel < -1:
            angvel = -1

        # PD Controller - speed
        if abs(angle_remaining) <= math.pi / 6:
            speed = self.pd_speed(tank, x, y, time_diff)
        else:
            speed = 1 - abs(angle_remaining / math.pi)

        if speed > 1:
            speed = 1.0
        elif speed < -1:
            speed = -1.0

        command = Command(tank.index, speed, angvel, shoot)
        self.commands.append(command)
        self.old_angle[tank.index] = tank.angle

    def pd_angvel(self, tank, target_angle, time_diff):
        """PD Controller for the angular velocity of the tank."""

        kp = 1.0
        kd = -0.2

        angle_remaining = self.angle_remaining(tank.angle, target_angle)
        differential = self.angle_remaining(self.old_angle[tank.index], tank.angle) / time_diff

        angvel = ( kp * angle_remaining ) + ( kd * differential )
        return angvel

    def pd_speed(self, tank, target_x, target_y, time_diff):
        """PD Controller for the speed of the tank."""

        kp = 1.0
        kd = -0.2

        x_remaining = target_x - tank.x
        y_remaining = target_y - tank.y
        distance_remaining = math.sqrt( ( x_remaining ) ** 2 + ( y_remaining ) ** 2 )
        current_speed = math.sqrt( tank.vx ** 2 + tank.vy ** 2 )
        differential = current_speed - self.old_speed[tank.index] / time_diff

        speed = ( kp * distance_remaining ) + ( kd * differential )
        return speed

    def angle_remaining(self, tank_angle, target_angle):
        """Find the angle remaining (in radians) between the tank and the target."""

        tank_angle = self.normalize_angle(tank_angle)
        target_angle = self.normalize_angle(target_angle)

        # If the angles are on the same hemisphere, target - tank.
        if tank_angle * target_angle > 0:
            return target_angle - tank_angle

        # Otherwise they are on opposite hemispheres.
        positive_angle = max(tank_angle, target_angle)
        negative_angle = min(tank_angle, target_angle)

        tank_positive = True
        if tank_angle < 0:
            tank_positive = False

        # Compare the angles to turn right and left.
        right_angle = -1 * ( positive_angle - negative_angle )
        left_angle = 2 * math.pi - positive_angle + negative_angle

        if not tank_positive:
            temp_angle = -1 * right_angle
            right_angle = -1 * left_angle
            left_angle = temp_angle

        # Pick the smallest angle.
        if abs(right_angle) <= abs(left_angle):
            return right_angle

        return left_angle

    def normalize_angle(self, angle):
        """Make any angle be between +/- pi."""
        angle -= 2 * math.pi * int (angle / (2 * math.pi))
        if angle <= -math.pi:
            angle += 2 * math.pi
        elif angle > math.pi:
            angle -= 2 * math.pi
        return angle

    def cmp_flags(self, a, b):
        a_dist = math.sqrt(a.x ** 2 + a.y ** 2)
        b_dist = math.sqrt(b.x ** 2 + b.y ** 2)
        if a_dist < b_dist:
            return -1
        elif a_dist == b_dist:
            return 0
        return 1

    def get_closest_goal(self, tank):
        flag_list = copy.deepcopy(self.flags)
        for flag in flag_list:
            flag.x -= tank.x
            flag.y -= tank.y
        flag_list.sort(self.cmp_flags)
        for flag in flag_list:
            flag.x += tank.x
            flag.y += tank.y
            if flag.color != self.constants['team'] and flag.poss_color != self.constants['team']:
                return (flag.x, flag.y)
            elif flag.color == self.constants['team'] and (flag.x != self.base['x'] or flag.y != self.base['y']):
                return (flag.x, flag.y)