exellentPractice.append(extract[0]) weakPractice.append(extract[1]) # excellentList = exellentPractice[w] # weakList = weakPractice[w] # excellentList = labsheetActiveWeeks[w] # weakList = labsheetLessActiveWeeks[w] ex1_excellent = graphLearning.mapNewLabel(ex1_excellent, reLabelIndex) ex1_weak = graphLearning.mapNewLabel(ex1_weak, reLabelIndex) ex2_excellent = graphLearning.mapNewLabel(ex2_excellent, reLabelIndex) ex2_weak = graphLearning.mapNewLabel(ex2_weak, reLabelIndex) excellentList = ex2_excellent.index weakList = ex2_weak.index graphLearning.visualiseMSTGraph(graph_all_weeks[11], excellentList, weakList, reLabelIndex) #---------------------------------------------- #Node embedding analysis #---------------------------------------------- node_embeddings_weeks = [] for w in range(0, 12): print('Week ' + str(w) + '...') node2vec = Node2Vec(graph_all_weeks[w].graph, dimensions=64, walk_length=8, num_walks=15, p=0.1, q=1) model = node2vec.fit(window=8, min_count=1)
~ca1162019_transitionDataMatrixWeeks[w].index.isin(ex3_excellent_2019.index )].index student2020_excellent = ca1162020_transitionDataMatrixWeeks[w].loc[ ca1162020_transitionDataMatrixWeeks[w].index.isin( ex3_excellent_2020.index)].index student2020_weak = ca1162020_transitionDataMatrixWeeks[w].loc[ ~ca1162020_transitionDataMatrixWeeks[w].index.isin(ex3_excellent_2020.index )].index studentCohort = { "2018 2019 excellent": student2018_excellent.union(student2019_excellent), "2018 2019 weak": student2018_weak.union(student2019_weak), "2020 excellent": student2020_excellent, "2020 weak": student2020_weak } graphLearning.visualiseMSTGraph(graph_all_weeks[w], studentCohort, reLabelIndex) import matplotlib.cm as cm G = graph_all_weeks[9].graph node_color = [] nodelist = [] nodelist = [] for n in G.nodes: nodelist.append(n) if n in student2018_excellent.union(student2018_weak): node_color.append('blue') elif n in student2019_excellent.union(student2019_weak): node_color.append('red') elif n in student2020_excellent.union(student2020_weak):