def test_cpd_hessian_optimize_offdiag(backendopt): dim = 3 for datatype in backendopt: T.set_backend(datatype) A_list, input_tensor, loss, residual = cpd_graph(dim, size, rank) A, B, C = A_list A_list, input_tensor_val = init_rand_cp(dim, size, rank) A_val, B_val, C_val = A_list hessian = ad.hessian(loss, [A, B, C]) hessian_offdiag = [hessian[0][1], hessian[1][0]] for node in hessian_offdiag: optimize(node) assert isinstance(node, ad.AddNode) num_operations = len( list( filter(lambda x: isinstance(x, ad.OpNode), find_topo_sort([node])))) # This is currently non-deterministic. # assert num_operations == 14 executor = ad.Executor(hessian_offdiag) hes_diag_vals = executor.run(feed_dict={ A: A_val, B: B_val, C: C_val, input_tensor: input_tensor_val, })
def test_simplify_optimize_w_tail_einsum(backendopt): for datatype in backendopt: T.set_backend(datatype) A = ad.Variable(name="A", shape=[2, 2]) out = ad.einsum("ab,bc->ac", A, ad.einsum("ab,bc->ac", ad.identity(2), ad.identity(2))) newout_optimize = optimize(out) newout_simplify = simplify(out) assert newout_optimize == A assert newout_simplify == A
def test_cpd_hessian_optimize_diag(backendopt): dim = 3 for datatype in backendopt: T.set_backend(datatype) A_list, input_tensor, loss, residual = cpd_graph(dim, size, rank) A, B, C = A_list A_list, input_tensor_val = init_rand_cp(dim, size, rank) A_val, B_val, C_val = A_list hessian = ad.hessian(loss, [A, B, C]) hessian_diag = [hessian[0][0], hessian[1][1], hessian[2][2]] for node in hessian_diag: node = optimize(node) assert isinstance(node, ad.AddNode) num_operations = len( list( filter(lambda x: isinstance(x, ad.OpNode), find_topo_sort([node])))) """ Use this assertion to test the optimize function. 5 operations: 1. T.einsum('ca,cb->ab',A,A), 2. T.einsum('ca,cb->ab',B,B), 3. T.einsum('ab,ab->ab',T.einsum('ca,cb->ab',A,A),T.einsum('ca,cb->ab',B,B)), 4. T.einsum('bd,ac->abcd',T.einsum('ab,ab->ab',T.einsum('ca,cb->ab',A,A),T.einsum('ca,cb->ab',B,B)),T.identity(10)), 5. (T.einsum('bd,ac->abcd',T.einsum('ab,ab->ab',T.einsum('ca,cb->ab',A,A),T.einsum('ca,cb->ab',B,B)),T.identity(10))+ T.einsum('bd,ac->abcd',T.einsum('ab,ab->ab',T.einsum('ca,cb->ab',A,A),T.einsum('ca,cb->ab',B,B)),T.identity(10))) """ assert num_operations == 5 executor = ad.Executor(hessian_diag) hes_diag_vals = executor.run(feed_dict={ A: A_val, B: B_val, C: C_val, input_tensor: input_tensor_val, }) expected_hes_diag_val = [ 2 * T.einsum('eb,ed,fb,fd,ac->abcd', B_val, B_val, C_val, C_val, T.identity(size)), 2 * T.einsum('eb,ed,fb,fd,ac->abcd', A_val, A_val, C_val, C_val, T.identity(size)), 2 * T.einsum('eb,ed,fb,fd,ac->abcd', A_val, A_val, B_val, B_val, T.identity(size)) ] assert T.norm(hes_diag_vals[0] - expected_hes_diag_val[0]) < 1e-8 assert T.norm(hes_diag_vals[1] - expected_hes_diag_val[1]) < 1e-8 assert T.norm(hes_diag_vals[2] - expected_hes_diag_val[2]) < 1e-8
def test_cpd_jtjvp_optimize(backendopt): dim = 3 for datatype in backendopt: T.set_backend(datatype) A_list, input_tensor, loss, residual = cpd_graph(dim, size, rank) A, B, C = A_list v_A = ad.Variable(name="v_A", shape=[size, rank]) v_B = ad.Variable(name="v_B", shape=[size, rank]) v_C = ad.Variable(name="v_C", shape=[size, rank]) A_list, input_tensor_val = init_rand_cp(dim, size, rank) A_val, B_val, C_val = A_list v_A_list, _ = init_rand_cp(dim, size, rank) v_A_val, v_B_val, v_C_val = v_A_list JtJvps = ad.jtjvps(output_node=residual, node_list=[A, B, C], vector_list=[v_A, v_B, v_C]) JtJvps = [optimize(JtJvp) for JtJvp in JtJvps] dedup(*JtJvps) for node in JtJvps: assert isinstance(node, ad.AddNode) executor_JtJvps = ad.Executor(JtJvps) jtjvp_val = executor_JtJvps.run( feed_dict={ A: A_val, B: B_val, C: C_val, input_tensor: input_tensor_val, v_A: v_A_val, v_B: v_B_val, v_C: v_C_val }) expected_hvp_val = expect_jtjvp_val(A_val, B_val, C_val, v_A_val, v_B_val, v_C_val) assert T.norm(jtjvp_val[0] - expected_hvp_val[0]) < 1e-8 assert T.norm(jtjvp_val[1] - expected_hvp_val[1]) < 1e-8 assert T.norm(jtjvp_val[2] - expected_hvp_val[2]) < 1e-8
def cpd_nls(size, rank, regularization=1e-7, mode='ad'): """ mode: ad / optimized / jax """ assert mode in {'ad', 'jax', 'optimized'} dim = 3 for datatype in BACKEND_TYPES: T.set_backend(datatype) T.seed(1) A_list, input_tensor, loss, residual = cpd_graph(dim, size, rank) A, B, C = A_list v_A = ad.Variable(name="v_A", shape=[size, rank]) v_B = ad.Variable(name="v_B", shape=[size, rank]) v_C = ad.Variable(name="v_C", shape=[size, rank]) grads = ad.gradients(loss, [A, B, C]) JtJvps = ad.jtjvps(output_node=residual, node_list=[A, B, C], vector_list=[v_A, v_B, v_C]) A_list, input_tensor_val = init_rand_cp(dim, size, rank) A_val, B_val, C_val = A_list if mode == 'jax': from source import SourceToSource StS = SourceToSource() StS.forward(JtJvps, file=open("examples/jax_jtjvp.py", "w"), function_name='jtjvp', backend='jax') executor_grads = ad.Executor([loss] + grads) JtJvps = [optimize(JtJvp) for JtJvp in JtJvps] dedup(*JtJvps) executor_JtJvps = ad.Executor(JtJvps) optimizer = cp_nls_optimizer(input_tensor_val, [A_val, B_val, C_val]) regu_increase = False normT = T.norm(input_tensor_val) time_all, fitness = 0., 0. for i in range(10): t0 = time.time() def hess_fn(v): if mode == 'optimized': from examples.cpd_jtjvp_optimized import jtjvp return jtjvp([v[0], B_val, C_val, v[1], A_val, v[2]]) elif mode == 'ad': return executor_JtJvps.run( feed_dict={ A: A_val, B: B_val, C: C_val, input_tensor: input_tensor_val, v_A: v[0], v_B: v[1], v_C: v[2] }) elif mode == 'jax': from examples.jax_jtjvp import jtjvp return jtjvp([B_val, C_val, v[0], A_val, v[1], v[2]]) loss_val, grad_A_val, grad_B_val, grad_C_val = executor_grads.run( feed_dict={ A: A_val, B: B_val, C: C_val, input_tensor: input_tensor_val }) res = math.sqrt(loss_val) fitness = 1 - res / normT print(f"[ {i} ] Residual is {res} fitness is: {fitness}") print(f"Regularization is: {regularization}") [A_val, B_val, C_val], total_cg_time = optimizer.step( hess_fn=hess_fn, grads=[grad_A_val / 2, grad_B_val / 2, grad_C_val / 2], regularization=regularization) t1 = time.time() print(f"[ {i} ] Sweep took {t1 - t0} seconds") time_all += t1 - t0 if regularization < 1e-07: regu_increase = True elif regularization > 1: regu_increase = False if regu_increase: regularization = regularization * 2 else: regularization = regularization / 2 return total_cg_time, fitness