def build(self, hiddens=[16], activations=['relu'], dropout=0.5, l2_norm=5e-4, lr=0.01, use_bias=False): if self.kind == "T": with tf.device(self.device): self.model = tfGCN(self.graph.n_attrs, self.graph.n_classes, hiddens=hiddens, activations=activations, dropout=dropout, l2_norm=l2_norm, lr=lr, use_bias=use_bias) else: self.model = pyGCN(self.graph.n_attrs, self.graph.n_classes, hiddens=hiddens, activations=activations, dropout=dropout, l2_norm=l2_norm, lr=lr, use_bias=use_bias).to(self.device)
def build(self, hiddens=[32], activations=['relu'], dropout=0.5, l2_norm=0., lr=0.01, use_bias=False): # if self.kind == "P": # raise RuntimeError(f"Currently {self.name} only support for tensorflow backend.") if self.kind == "T": with tf.device(self.device): self.model = tfGCN(self.graph.n_attrs, self.graph.n_classes, hiddens=hiddens, activations=activations, dropout=dropout, l2_norm=l2_norm, lr=lr, use_bias=use_bias, experimental_run_tf_function=False) else: self.model = pyGCN(self.graph.n_attrs, self.graph.n_classes, hiddens=hiddens, activations=activations, dropout=dropout, l2_norm=l2_norm, lr=lr, use_bias=use_bias).to(self.device)