Example #1
0
def split_characters(image, threshold=255):
	if type(image) == np.ndarray:
		arr = image
		image = np_to_pil(image)
	else:
		arr = pil_to_np(image, mode="L")
	start = 0
	boxes = []
	space = True
	unconnected = 0

	trns = arr.transpose()
# 	whites = trns[np.min(trns) >= threshold]
	whites = np.min(trns) >= threshold
	print(whites)
# 	whites = trns
	
# 	whites[whites >= threshold] = 1
# 	whites[whites <= threshold] = 0
	
# 	print(np.sum(whites))
	
# 	print(arr[arr > 200])
# 
# 	for i, col in enumerate(arr.transpose()):
# 		min_val = np.min(col)
# 	for i in range(arr.shape[1]):
# 		min_val = min(arr[:,i])
# 		if min_val >= threshold and not space:
# 			pass
# 			box = [start, 0, i, arr.shape[0]]
# 			boxes.append(box)
# 			space = True
# 		elif min_val < threshold and space:
# 			start = i
# 			space = False
# 		elif i > 0 and (i - start) > 1 and start != 0 and min_val < threshold:
# 			x, y = arr[:,i], arr[:,i-1]
# 			for j in range(1, arr.shape[0]-1):
# 				if x[j] < threshold and any(np.array([y[j-1], y[j], y[j+1]]) < threshold):
# 					break
# 			else:
# 				box = [start, 0, i, arr.shape[0]]
# 				boxes.append(box)
# 				start = i
					
	if not space:
		box = [start, 0, arr.shape[1], arr.shape[0]]
		boxes.append(box)
		
	return [image.crop(bbox) for bbox in boxes]
Example #2
0
def split_characters(image, threshold=255):
    if type(image) == np.ndarray:
        arr = image
        image = np_to_pil(image)
    else:
        arr = pil_to_np(image, mode="L")
    start = 0
    boxes = []
    space = True
    unconnected = 0

    trns = arr.transpose()
    # 	whites = trns[np.min(trns) >= threshold]
    whites = np.min(trns) >= threshold
    print(whites)
    # 	whites = trns

    # 	whites[whites >= threshold] = 1
    # 	whites[whites <= threshold] = 0

    # 	print(np.sum(whites))

    # 	print(arr[arr > 200])
    #
    # 	for i, col in enumerate(arr.transpose()):
    # 		min_val = np.min(col)
    # 	for i in range(arr.shape[1]):
    # 		min_val = min(arr[:,i])
    # 		if min_val >= threshold and not space:
    # 			pass
    # 			box = [start, 0, i, arr.shape[0]]
    # 			boxes.append(box)
    # 			space = True
    # 		elif min_val < threshold and space:
    # 			start = i
    # 			space = False
    # 		elif i > 0 and (i - start) > 1 and start != 0 and min_val < threshold:
    # 			x, y = arr[:,i], arr[:,i-1]
    # 			for j in range(1, arr.shape[0]-1):
    # 				if x[j] < threshold and any(np.array([y[j-1], y[j], y[j+1]]) < threshold):
    # 					break
    # 			else:
    # 				box = [start, 0, i, arr.shape[0]]
    # 				boxes.append(box)
    # 				start = i

    if not space:
        box = [start, 0, arr.shape[1], arr.shape[0]]
        boxes.append(box)

    return [image.crop(bbox) for bbox in boxes]
Example #3
0
def update_training_set(image,
                        digits=None,
                        binary_threshold=110,
                        net=None,
                        new=False):
    if not net:
        net = NETWORK
    if new:
        training_set = SupervisedDataSet(INPUTS, OUTPUTS)
    elif not TRAINING_SET:
        if os.path.isfile(TRAINING_SET_PATH):
            with open(TRAINING_SET_PATH, 'rb') as f:
                training_set = pickle.load(f)
        else:
            training_set = SupervisedDataSet(INPUTS, OUTPUTS)
    else:
        training_set = TRAINING_SET

    if not digits:
        image.show()
        digits = input("What are the characters in this picture? ")
    logger.debug("Image is supposed to have the following string: %s" % digits)

    if len(digits) == 1:
        chars = [image]
    else:
        chars = graphics.image_characters(image, binary_threshold)

    if len(digits) != len(chars):
        logger.error(
            ("The number of characters is not the same ("
             "recognized: %d, supposed to be: %d ('%s'))! Dou suru kana~ "
             "Skipping this image.") % (len(chars), len(digits), digits))
        input()
        return

    for i, char in enumerate(chars):
        d = digits[i]
        if d not in "0123456789":
            logger.debug("Not adding char %s to the training set" % d)
            continue
        inputs = graphics.pil_to_np(char.resize((5, 5), 1)).flatten()
        outputs = [0] * 10
        outputs[int(d)] = 1
        training_set.addSample(inputs, outputs)
        logger.debug("Added a sample for digits %s. Training set size: %d" %
                     (d, len(training_set)))

    with open(TRAINING_SET_PATH, 'wb') as f:
        pickle.dump(training_set, f)
Example #4
0
def recognize_digits(image, binary_threshold=110, *args, **kwargs):
	image.show()
	chars = graphics.image_characters(image, binary_threshold)
	digits = ""
	for char in chars:
		char = graphics.crop_to_bounding_box(char)
# 		char.show()
		char = char.resize((5,5), 1)
		inputs = graphics.pil_to_np(char).flatten()
# 		print(inputs)
		r = NETWORK.activate(inputs)
# 		print(r)
		digits += str(r.argmax())
# 		input("digits so far: %s" % digits)
# 	print("Digits recognized: %s" % digits)
	return digits
Example #5
0
    def get_bet(self, window, threshold=None, image=False):
        bet = window.crop(self.bet_box)
        # 		if image: return bet

        if not threshold: threshold = self.ocr_threshold

        bet_np = graphics.pil_to_np(bet)
        white = graphics.colour_ratio(bet_np, "White")
        if white < 0.01:
            return None
        else:
            ## THIS PART IS BUGGED AS F**K, but seems to work for now
            ## No idea yet how to detect green poker chips to crop the image.
            for i in range(bet_np.shape[1] // 2, bet_np.shape[1]):
                col = bet_np[:, i:i + 1]
                max_red_ratio = graphics.max_colour_ratio(col, "Red")
                max_green_ratio = graphics.max_colour_ratio(col,
                                                            "Red")  # green?!?!
                if max_red_ratio > 0.5:
                    # 					print("Max red ratio in each pixel in column %d is: %.3f" % (i, max_red_ratio))
                    bet = bet.crop((0, 0, i, bet.height))
                    break
                if max_green_ratio > 0.334:
                    # 					print("Max green ratio in column %d is: %.3f" % (i, max_green_ratio))
                    bet = bet.crop((0, 0, i - 1, bet.height))
                    break
            for i in range(bet_np.shape[1] // 2, -1, -1):
                col = bet_np[:, i:i + 1]
                max_red_ratio = graphics.max_colour_ratio(col, "Red")
                max_green_ratio = graphics.max_colour_ratio(col,
                                                            "Red")  # green?!?!
                if max_red_ratio > 0.5:
                    # 					print("Max red ratio in each pixel in colum %d is : %.3f" % (i, max_red_ratio))
                    bet = bet.crop((i + 1, 0, bet.width, bet.height))
                    break
                if max_green_ratio > 0.334:
                    # 					print("Max green ratio in column %d is: %.3f" % (i, max_green_ratio))
                    bet = bet.crop((i - 1, 0, bet.width, bet.height))
                    break


# 			bet.show()
            if image: return bet
            bet = graphics.recognize_digits(bet, threshold)
            return bet
Example #6
0
def update_training_set(image, digit, net=None, new=False):
	if not net:
		net = NETWORK
	if new or not hasattr(net, 'training_set'):
		net.training_set = SupervisedDataSet(net.training_set.indim, net.training_set.outdim)
	image = graphics.np_to_pil(image)
	image = graphics.crop_to_bounding_box(image)
# 	image.show()
	image = image.resize((5,5), 1)
# 	image.show()
	outputs = [0]*10
	outputs[int(digit)] = 1
	inputs = graphics.pil_to_np(image).flatten()
# 	print("Digit: %s" % digit)
# 	print("inputs: ", inputs)
# 	print("outputs: ", outputs)
	net.training_set.addSample(inputs, outputs)
	print("Added a sample for digits %s. Training set size: %d" % (digit, len(net.training_set)))
Example #7
0
def recognize_digits(image, binary_threshold=110, *args, **kwargs):
    image.show()
    chars = graphics.image_characters(image, binary_threshold)
    digits = ""
    for char in chars:
        char = graphics.crop_to_bounding_box(char)
        # 		char.show()
        char = char.resize((5, 5), 1)
        inputs = graphics.pil_to_np(char).flatten()
        # 		print(inputs)
        r = NETWORK.activate(inputs)
        # 		print(r)
        digits += str(r.argmax())


# 		input("digits so far: %s" % digits)
# 	print("Digits recognized: %s" % digits)
    return digits
Example #8
0
def update_training_set(image, digits=None, binary_threshold=110, net=None, new=False):
	if not net:
		net = NETWORK
	if new:
		training_set = SupervisedDataSet(INPUTS, OUTPUTS)
	elif not TRAINING_SET:
		if os.path.isfile(TRAINING_SET_PATH):
			with open(TRAINING_SET_PATH, 'rb') as f:
				training_set = pickle.load(f)
		else:
			training_set = SupervisedDataSet(INPUTS, OUTPUTS)
	else:
		training_set = TRAINING_SET
		
	if not digits:
		image.show()
		digits = input("What are the characters in this picture? ")
	logger.debug("Image is supposed to have the following string: %s" % digits)
	
	if len(digits) == 1:
		chars = [image]
	else:
		chars = graphics.image_characters(image, binary_threshold)
	
	if len(digits) != len(chars):
		logger.error(("The number of characters is not the same ("
			"recognized: %d, supposed to be: %d ('%s'))! Dou suru kana~ "
			"Skipping this image.") % (len(chars), len(digits), digits))
		input()
		return
	
	for i, char in enumerate(chars):
		d = digits[i]
		if d not in "0123456789":
			logger.debug("Not adding char %s to the training set" % d)
			continue
		inputs = graphics.pil_to_np(char.resize((5,5), 1)).flatten()
		outputs = [0] * 10
		outputs[int(d)] = 1
		training_set.addSample(inputs, outputs)
		logger.debug("Added a sample for digits %s. Training set size: %d" % (d, len(training_set)))
	
	with open(TRAINING_SET_PATH, 'wb') as f:
		pickle.dump(training_set, f)
Example #9
0
def update_training_set(image, digit, net=None, new=False):
    if not net:
        net = NETWORK
    if new or not hasattr(net, 'training_set'):
        net.training_set = SupervisedDataSet(net.training_set.indim,
                                             net.training_set.outdim)
    image = graphics.np_to_pil(image)
    image = graphics.crop_to_bounding_box(image)
    # 	image.show()
    image = image.resize((5, 5), 1)
    # 	image.show()
    outputs = [0] * 10
    outputs[int(digit)] = 1
    inputs = graphics.pil_to_np(image).flatten()
    # 	print("Digit: %s" % digit)
    # 	print("inputs: ", inputs)
    # 	print("outputs: ", outputs)
    net.training_set.addSample(inputs, outputs)
    print("Added a sample for digits %s. Training set size: %d" %
          (digit, len(net.training_set)))
Example #10
0
def recognize_digits(image, binary_threshold=110, show=False, *args, **kwargs):
    if show:
        image.show()
    chars = graphics.image_characters(image, binary_threshold)
    digits = ""
    for char in chars:
        char = graphics.crop_to_bounding_box(char)
        if not is_digit(char):
            digits += recognize_char(char)
            continue
        char = char.resize((5, 5), 1)
        inputs = graphics.pil_to_np(char).flatten()
        output = NETWORK.activate(inputs)
        top = output.argmax()
        digits += str(top)

        second = output.argpartition(-2)[-2:-1][0]

        logger.debug("Top two values: %.3f (%s), %.3f (%s). Ratio: %.3f" %
                     (output[top], str(top), output[second], str(second),
                      output[second] / output[top]))
    return digits
Example #11
0
def recognize_digits(image, binary_threshold=110, show=False, *args, **kwargs):
	if show:
		image.show()
	chars = graphics.image_characters(image, binary_threshold)
	digits = ""
	for char in chars:
		char = graphics.crop_to_bounding_box(char)
		if not is_digit(char):
			digits += recognize_char(char)
			continue
		char = char.resize((5,5), 1)
		inputs = graphics.pil_to_np(char).flatten()
		output = NETWORK.activate(inputs)
		top = output.argmax()
		digits += str(top)
		
		second = output.argpartition(-2)[-2:-1][0]
		
		logger.debug("Top two values: %.3f (%s), %.3f (%s). Ratio: %.3f" % (
			output[top], str(top), output[second], str(second),
			output[second]/output[top]))
	return digits
Example #12
0
def _create_image_with_info(window):
    threshold = 100
    font_size = 17
    pot = money.pot_image(window)
    if graphics.colour_ratio(pot, "White") >= 0.01:
        pot = recognition.recognize_digits(pot, threshold)
    else:
        pot = "NO POT!"
    draw = PIL.ImageDraw.Draw(window)
    font = PIL.ImageFont.truetype("data/font.ttf", font_size)
    draw.text((330, 270), "POT SIZE: %s" % pot, (255, 0, 0), font=font)
    del draw

    own_stack = money.own_stack_image(window)
    own_stack = recognition.recognize_digits(own_stack, threshold)
    draw = PIL.ImageDraw.Draw(window)
    font = PIL.ImageFont.truetype("data/font.ttf", font_size)
    draw.text((330, 435), "MY STACK: %s" % own_stack, (255, 0, 0), font=font)
    del draw

    seat = dealer.find_dealer_seat(window)
    loc = dealer.DEALER_OFFSETS[seat]
    loc = (loc[0] - 60, loc[1] + 20)
    draw = PIL.ImageDraw.Draw(window)
    font = PIL.ImageFont.truetype("data/font.ttf", font_size)
    draw.text(loc,
              "DEALER HERE (player %d)!" % (seat + 1), (255, 0, 0),
              font=font)
    del draw

    for j in range(5):
        p = players.Player(j)
        if p.is_in_game(window):
            text = "PLAYER IS ACTIVE"
        else:
            text = "PLAYER INACTIVE"
        draw = PIL.ImageDraw.Draw(window)
        font = PIL.ImageFont.truetype("data/font.ttf", font_size)
        loc = (p.card_box.left - 20, p.card_box.top - 20)
        draw.text(loc, text, (255, 0, 0), font=font)
        del draw

        stack = window.crop(p.stack_box)
        stack = recognition.recognize_digits(stack, threshold)
        draw = PIL.ImageDraw.Draw(window)
        font = PIL.ImageFont.truetype("data/font.ttf", font_size)
        loc = (p.stack_box.left - 20, p.stack_box.top + 20)
        draw.text(loc, "STACK: %s" % stack, (255, 0, 0), font=font)
        del draw

        bet = window.crop(p.bet_box)
        bet_np = graphics.pil_to_np(bet)
        white = graphics.colour_ratio(bet_np, "White")
        if white < 0.01:
            text = "NO BETS HERE!"
        else:
            for i in range(bet_np.shape[1] // 2, bet_np.shape[1]):
                col = bet_np[:, i:i + 1]
                max_red_ratio = graphics.max_colour_ratio(col, "Red")
                max_green_ratio = graphics.max_colour_ratio(col, "Red")
                if max_red_ratio > 0.5:
                    # 					print("Max red ratio in each pixel in column %d is: %.3f" % (i, max_red_ratio))
                    bet = bet.crop((0, 0, i, bet.height))
                    break
                if max_green_ratio > 0.334:
                    # 					print("Max green ratio in column %d is: %.3f" % (i, max_green_ratio))
                    bet = bet.crop((0, 0, i - 1, bet.height))
                    break
            for i in range(bet_np.shape[1] // 2, -1, -1):
                col = bet_np[:, i:i + 1]
                max_red_ratio = graphics.max_colour_ratio(col, "Red")
                if max_red_ratio > 0.5:
                    # 					print("Max red ratio in each pixel in colum %d is : %.3f" % (i, max_red_ratio))
                    bet = bet.crop((i + 1, 0, bet.width, bet.height))
                    break
            text = "PLACED A BET: %s" % recognition.recognize_digits(
                bet, threshold)

        draw = PIL.ImageDraw.Draw(window)
        font = PIL.ImageFont.truetype("data/font.ttf", font_size)
        loc = (p.bet_box.left - 40, p.bet_box.top - 20 + (int(j == 2) * 40))
        draw.text(loc, text, (255, 0, 0), font=font)

    cc, val_img = actions.get_cc_images(window)
    call = recognition.recognize_digits(val_img)
    draw = PIL.ImageDraw.Draw(window)
    font = PIL.ImageFont.truetype("data/font.ttf", int(font_size * 1.5))
    loc = (540, 490)
    draw.text(loc, call, (0, 255, 0), font=font)

    br, val_img, _ = actions.get_br_images(window)
    bet = recognition.recognize_digits(val_img)
    draw = PIL.ImageDraw.Draw(window)
    font = PIL.ImageFont.truetype("data/font.ttf", int(font_size * 1.5))
    loc = (660, 490)
    draw.text(loc, bet, (0, 255, 0), font=font)

    own_cards_image = cards.own_cards_image(window)
    own_cards = cards.own_cards(own_cards_image)
    flop = [cards.table_card(window, i) for i in range(3)]
    turn = cards.table_card(window, 3)
    river = cards.table_card(window, 4)

    # 	my_card = cards.

    # 	window.show()
    return window
Example #13
0
# 			for pixel in row:
# 				if np.sum(pixel[:3]) > w_thres:
# 					pixel[:3] = np.array([0,0,0])
	if w_thres:
		slice = slice[np.sum(slice, axis=2) <= w_thres]
		colour = np.sum(slice[:,col])
# 		total = np.sum(np.sum(slice[:,:], axis=2) <= w_thres)
# 		colour = np.sum(np.sum(slice[:,:], axis=2) <= w_thres)
	else:
		colour = np.sum(slice[:,:,col])

	total = np.sum(slice)	
# 	print(slice[:,:,:3] > w_thres)
	

# 	for i in range(height):
# 		for j in range(width):
# 			t = sum(array[i+offset[0]][j+offset[1]][:3])
# 			if w_thres and t > w_thres: continue		# ignore "white" pixels
# 			total += t
# 			colour += array[i+offset[0]][j+offset[1]][col]
	print("Total: %d, colour: %d" % (total, colour))
	return colour / max(total, 0.00001)

im = graphics.open_image("images/cards/2d.png")
im.show()

im_np = graphics.pil_to_np(im)

print(colour_ratio_rgb(im_np, "Red", offset=(5,7), size=(4,4), w_thres=None))
print(colour_ratio_rgb_opt(im_np, "Red", offset=(5,7), size=(4,4), w_thres=None))
Example #14
0
def _create_image_with_info(window):
	threshold = 100
	font_size = 17
	pot = money.pot_image(window)
	if graphics.colour_ratio(pot, "White") >= 0.01:
		pot = recognition.recognize_digits(pot, threshold)
	else:
		pot = "NO POT!"
	draw = PIL.ImageDraw.Draw(window)
	font = PIL.ImageFont.truetype("data/font.ttf", font_size)
	draw.text((330, 270),"POT SIZE: %s" % pot,(255,0,0), font=font)
	del draw
	
	own_stack = money.own_stack_image(window)
	own_stack = recognition.recognize_digits(own_stack, threshold)
	draw = PIL.ImageDraw.Draw(window)
	font = PIL.ImageFont.truetype("data/font.ttf", font_size)
	draw.text((330, 435),"MY STACK: %s" % own_stack,(255,0,0), font=font)
	del draw
	
	seat = dealer.find_dealer_seat(window)
	loc = dealer.DEALER_OFFSETS[seat]
	loc = (loc[0]-60, loc[1] + 20)
	draw = PIL.ImageDraw.Draw(window)
	font = PIL.ImageFont.truetype("data/font.ttf", font_size)
	draw.text(loc,"DEALER HERE (player %d)!" % (seat + 1),(255,0,0), font=font)
	del draw	

	for j in range(5):
		p = players.Player(j)
		if p.is_in_game(window):
			text = "PLAYER IS ACTIVE"
		else:
			text = "PLAYER INACTIVE"
		draw = PIL.ImageDraw.Draw(window)
		font = PIL.ImageFont.truetype("data/font.ttf", font_size)
		loc = (p.card_box.left-20, p.card_box.top-20)
		draw.text(loc, text, (255, 0, 0), font=font)
		del draw
		
		stack = window.crop(p.stack_box)
		stack = recognition.recognize_digits(stack, threshold)
		draw = PIL.ImageDraw.Draw(window)
		font = PIL.ImageFont.truetype("data/font.ttf", font_size)
		loc = (p.stack_box.left-20, p.stack_box.top+20)
		draw.text(loc, "STACK: %s" % stack, (255, 0, 0), font=font)
		del draw
		
		bet = window.crop(p.bet_box)
		bet_np = graphics.pil_to_np(bet)
		white = graphics.colour_ratio(bet_np, "White")
		if white < 0.01: 
			text = "NO BETS HERE!"
		else:
			for i in range(bet_np.shape[1] // 2, bet_np.shape[1]):
				col = bet_np[:,i:i+1]
				max_red_ratio = graphics.max_colour_ratio(col, "Red")
				max_green_ratio = graphics.max_colour_ratio(col, "Red")
				if max_red_ratio > 0.5:
# 					print("Max red ratio in each pixel in column %d is: %.3f" % (i, max_red_ratio))
					bet = bet.crop((0, 0, i, bet.height))
					break
				if max_green_ratio > 0.334:
# 					print("Max green ratio in column %d is: %.3f" % (i, max_green_ratio))
					bet = bet.crop((0, 0, i-1, bet.height))
					break
			for i in range(bet_np.shape[1] // 2, -1, -1):
				col = bet_np[:,i:i+1]
				max_red_ratio = graphics.max_colour_ratio(col, "Red")
				if max_red_ratio > 0.5:
# 					print("Max red ratio in each pixel in colum %d is : %.3f" % (i, max_red_ratio))
					bet = bet.crop((i+1, 0, bet.width, bet.height))
					break
			text = "PLACED A BET: %s" % recognition.recognize_digits(bet, threshold)

		draw = PIL.ImageDraw.Draw(window)
		font = PIL.ImageFont.truetype("data/font.ttf", font_size)
		loc = (p.bet_box.left-40, p.bet_box.top-20 + (int(j == 2) * 40))
		draw.text(loc, text, (255, 0, 0), font=font)
	
	cc, val_img = actions.get_cc_images(window)
	call = recognition.recognize_digits(val_img)
	draw = PIL.ImageDraw.Draw(window)
	font = PIL.ImageFont.truetype("data/font.ttf", int(font_size*1.5))
	loc = (540, 490)
	draw.text(loc, call, (0, 255, 0), font=font)
	
	br, val_img, _ = actions.get_br_images(window)
	bet = recognition.recognize_digits(val_img)
	draw = PIL.ImageDraw.Draw(window)
	font = PIL.ImageFont.truetype("data/font.ttf", int(font_size*1.5))
	loc = (660, 490)
	draw.text(loc, bet, (0, 255, 0), font=font)

	own_cards_image = cards.own_cards_image(window)
	own_cards = cards.own_cards(own_cards_image)
	flop = [cards.table_card(window, i) for i in range(3)]
	turn = cards.table_card(window, 3)
	river = cards.table_card(window, 4)
	
# 	my_card = cards.
	
# 	window.show()
	return window
Example #15
0
# 				box = [start, 0, i, arr.shape[0]]
# 				boxes.append(box)
# 				start = i
					
	if not space:
		box = [start, 0, arr.shape[1], arr.shape[0]]
		boxes.append(box)
		
	return [image.crop(bbox) for bbox in boxes]
	

w = graphics.open_image('images/game/75814.png')
im = money.pot_image(w)
im = im.convert(mode="L")
im = graphics.invert(im)
im = pil_to_np(im, mode="L")
white = np.max(im)
black = np.min(im)
binary_threshold = black + (white - black) * (120 / 255)
im = graphics.binarize(im, binary_threshold)	
# text.show()

def f(im):
# 	chars = None
	for i in range(50):
		chars = split_characters(im)
# 	for char in chars:
# 		char.show()

import cProfile
# cProfile.run('f(im)', sort='tottime')
Example #16
0
def create_image_with_info():
    threshold = 115
    font_size = 17
    # 	window = game_window()
    window = game_window(path="images/game/s7.png")
    window.show()
    pot = money.pot_image(window)
    if graphics.colour_ratio(pot, "White") >= 0.01:
        pot = graphics.recognize_digits(pot, threshold)
    else:
        pot = "NO POT!"
    draw = PIL.ImageDraw.Draw(window)
    font = PIL.ImageFont.truetype("font.ttf", font_size)
    draw.text((330, 270), "POT SIZE: %s" % pot, (255, 0, 0), font=font)
    del draw

    own_stack = money.own_stack_image(window)
    own_stack = graphics.recognize_digits(own_stack, threshold)
    draw = PIL.ImageDraw.Draw(window)
    font = PIL.ImageFont.truetype("font.ttf", font_size)
    draw.text((330, 435), "MY STACK: %s" % own_stack, (255, 0, 0), font=font)
    del draw

    seat = dealer.find_dealer_seat(window)
    loc = dealer.DEALER_OFFSETS[seat]
    loc = (loc[0] - 60, loc[1] + 20)
    draw = PIL.ImageDraw.Draw(window)
    font = PIL.ImageFont.truetype("font.ttf", font_size)
    draw.text(loc,
              "DEALER HERE (player %d)!" % (seat + 1), (255, 0, 0),
              font=font)
    del draw

    for j in range(5):
        p = players.Player(j)
        if p.is_in_game(window):
            text = "PLAYER IS ACTIVE"
        else:
            text = "PLAYER INACTIVE"
        draw = PIL.ImageDraw.Draw(window)
        font = PIL.ImageFont.truetype("font.ttf", font_size)
        loc = (p.card_box.left - 20, p.card_box.top - 20)
        draw.text(loc, text, (255, 0, 0), font=font)
        del draw

        stack = window.crop(p.stack_box)
        stack = graphics.recognize_digits(stack, threshold)
        draw = PIL.ImageDraw.Draw(window)
        font = PIL.ImageFont.truetype("font.ttf", font_size)
        loc = (p.stack_box.left - 20, p.stack_box.top + 20)
        draw.text(loc, "STACK: %s" % stack, (255, 0, 0), font=font)
        del draw

        bet = window.crop(p.bet_box)
        bet_np = graphics.pil_to_np(bet)
        white = graphics.colour_ratio(bet_np, "White")
        if white < 0.01:
            text = "NO BETS HERE!"
        else:
            for i in range(bet_np.shape[1] // 2, bet_np.shape[1]):
                col = bet_np[:, i:i + 1]
                max_red_ratio = graphics.max_colour_ratio(col, "Red")
                max_green_ratio = graphics.max_colour_ratio(col, "Red")
                if max_red_ratio > 0.5:
                    print("Max red ratio in each pixel in column %d is: %.3f" %
                          (i, max_red_ratio))
                    bet = bet.crop((0, 0, i, bet.height))
                    break
                if max_green_ratio > 0.334:
                    print("Max green ratio in column %d is: %.3f" %
                          (i, max_green_ratio))
                    bet = bet.crop((0, 0, i - 1, bet.height))
                    break
            for i in range(bet_np.shape[1] // 2, -1, -1):
                col = bet_np[:, i:i + 1]
                max_red_ratio = graphics.max_colour_ratio(col, "Red")
                if max_red_ratio > 0.5:
                    print("Max red ratio in each pixel in colum %d is : %.3f" %
                          (i, max_red_ratio))
                    bet = bet.crop((i + 1, 0, bet.width, bet.height))
                    break
            text = "PLACED A BET: %s" % graphics.recognize_digits(
                bet, threshold)

        draw = PIL.ImageDraw.Draw(window)
        font = PIL.ImageFont.truetype("font.ttf", font_size)
        loc = (p.bet_box.left - 40, p.bet_box.top - 20 + (int(j == 2) * 40))
        draw.text(loc, text, (255, 0, 0), font=font)

# 	my_card = cards.

    window.show()
Example #17
0
    # 				box = [start, 0, i, arr.shape[0]]
    # 				boxes.append(box)
    # 				start = i

    if not space:
        box = [start, 0, arr.shape[1], arr.shape[0]]
        boxes.append(box)

    return [image.crop(bbox) for bbox in boxes]


w = graphics.open_image('images/game/75814.png')
im = money.pot_image(w)
im = im.convert(mode="L")
im = graphics.invert(im)
im = pil_to_np(im, mode="L")
white = np.max(im)
black = np.min(im)
binary_threshold = black + (white - black) * (120 / 255)
im = graphics.binarize(im, binary_threshold)
# text.show()


def f(im):
    # 	chars = None
    for i in range(50):
        chars = split_characters(im)


# 	for char in chars:
# 		char.show()