def main(args): # pylint:disable=redefined-outer-name # os.environ['CUDA_VISIBLE_DEVICE'] = args.device if args.cuda and not torch.cuda.is_available(): # cuda is not available args.cuda = False print("CUDA NOT AVAILABLE!") # args.max_epoch = 1 # args.controller_max_step = 1 # args.derive_num_sample = 1 torch.manual_seed(args.random_seed) if args.cuda: # print("Device Num", torch.cuda.current_device()) torch.cuda.manual_seed(args.random_seed) utils.makedirs(args.dataset) trnr = trainer.Trainer(args) if args.mode == 'train': print(args) trnr.train() elif args.mode == 'derive': trnr.derive() else: raise Exception(f"[!] Mode not found: {args.mode}")
def main(args): # pylint:disable=redefined-outer-name if args.cuda and not torch.cuda.is_available(): # cuda is not available args.cuda = False # args.max_epoch = 10 # args.controller_max_step = 1 # args.derive_num_sample = 1 torch.manual_seed(args.random_seed) if args.cuda: torch.cuda.manual_seed(args.random_seed) # 创建包含数据集Citeseer名称目录 utils.makedirs(args.dataset) """ def makedirs(path): if not os.path.exists(path): logger.info("[*] Make directories : {}".format(path)) os.makedirs(path) """ #训练入口,获取最终GNN入口 trnr = trainer.Trainer(args) if args.mode == 'train': print(args) trnr.train() elif args.mode == 'derive': trnr.derive() else: raise Exception(f"[!] Mode not found: {args.mode}")
def main(args): # pylint:disable=redefined-outer-name if args.cuda and not torch.cuda.is_available(): # cuda is not available args.cuda = False # args.max_epoch = 1 # args.controller_max_step = 1 # args.derive_num_sample = 1 torch.manual_seed(args.random_seed) if args.cuda: torch.cuda.manual_seed(args.random_seed) utils.makedirs(args.dataset) trnr = trainer.Trainer(args) if args.mode == 'train': print(args) trnr.train() elif args.mode == 'derive': trnr.derive() else: raise Exception(f"[!] Mode not found: {args.mode}")
aggregator_type_gene_space = [0, 1, 2, 3] activate_function_gene_space = [0, 1, 2, 3, 4, 5, 6, 7] number_of_heads_gene_space = [1, 2, 4, 6, 8, 16] hidden_units_gene_space = [4, 8, 16, 32, 64, 128, 256] gene_space = [ attention_type_gene_space, aggregator_type_gene_space, activate_function_gene_space, number_of_heads_gene_space, hidden_units_gene_space, attention_type_gene_space, aggregator_type_gene_space, activate_function_gene_space, number_of_heads_gene_space ] num_genes = len(gene_space) mutation_type = "random" mutation_percent_genes = 10 trnr = trainer.Trainer(args) ga_instance = pygad.GA(num_generations=num_generations, num_parents_mating=num_parents_mating, gene_type=int, fitness_func=fitness_function, sol_per_pop=sol_per_pop, num_genes=num_genes, gene_space=gene_space, parent_selection_type=parent_selection_type, keep_parents=keep_parents, crossover_type=crossover_type, mutation_type=mutation_type, on_generation=callback_gen, mutation_percent_genes=mutation_percent_genes) ga_instance.run()