Example #1
0
def reuse_coverage(data, milestones=(200, 1000), testname='tcov', e_radius=3.0,
                   nor=True, src=True, tgt=True, show=True, **kwargs):
    figs = []
    titles = ['no reuse', 'source', 'target']
    for i, (d, flag) in enumerate(zip(data, (nor, src, tgt))):
        if flag and d is not None:
            figs.append([])
            try:
                K_boot = d['jobcfg'].exploration.explorer.eras[0]
            except KeyError:
                K_boot = 200
            s_vectors = d['s_vectors']

            radius = d.expcfg.tests[testname].buffer_size
            for t in milestones:
                fig = graphs.coverage(d['s_channels'], radius,
                                      s_vectors=s_vectors[:t], swap_xy=False,
                                      plot_width=400, plot_height=400,
                                      title='{} {}'.format(titles[i], t), **kwargs)
                graphs.spread(d['s_channels'], s_vectors=s_vectors[:K_boot], fig=fig,
                              swap_xy=False, e_alpha=1.0, e_color=RED,
                              radius_units='data', e_radius=radius/4.0)
                graphs.spread(d['s_channels'], s_vectors=s_vectors[K_boot:t], fig=fig,
                              swap_xy=False, e_alpha=1.0,
                              radius_units='data', e_radius=radius/4.0)

                figs[-1].append(fig)

    if show:
        graphs.show(figs)
    else:
        return figs
Example #2
0
def reuse_coverage(
    data, milestones=(200, 1000), testname="tcov", e_radius=3.0, nor=True, src=True, tgt=True, show=True, **kwargs
):
    figs = []
    titles = ["no reuse", "source", "target"]
    for i, (d, flag) in enumerate(zip(data, (nor, src, tgt))):
        if flag and d is not None:
            figs.append([])
            try:
                K_boot = d["jobcfg"].exploration.explorer.eras[0]
            except KeyError:
                K_boot = 200
            s_vectors = d["s_vectors"]

            radius = d.expcfg.tests[testname].buffer_size
            for t in milestones:
                fig = graphs.coverage(
                    d["s_channels"],
                    radius,
                    s_vectors=s_vectors[:t],
                    swap_xy=False,
                    plot_width=400,
                    plot_height=400,
                    title="{} {}".format(titles[i], t),
                    **kwargs
                )
                graphs.spread(
                    d["s_channels"],
                    s_vectors=s_vectors[:K_boot],
                    fig=fig,
                    swap_xy=False,
                    e_alpha=1.0,
                    e_color=RED,
                    radius_units="data",
                    e_radius=radius / 4.0,
                )
                graphs.spread(
                    d["s_channels"],
                    s_vectors=s_vectors[K_boot:t],
                    fig=fig,
                    swap_xy=False,
                    e_alpha=1.0,
                    radius_units="data",
                    e_radius=radius / 4.0,
                )

                figs[-1].append(fig)

    if show:
        graphs.show(figs)
    else:
        return figs
Example #3
0
def coverage_graphs(expcfgs_levels, dest='tmp.html', n_graphs=3):
    cwd = os.getcwd()
    graphs.output_file(dest)

    red = '#DF6464'

    for level in expcfgs_levels:
        for i, exp_cfg in enumerate(level):
            n = 0
            batch = jobfactory.make_jobgroup([exp_cfg])
            os.chdir(os.path.expanduser(exp_cfg.meta.rootpath))

            data_hub = hub.DataHub(batch, sensory_only=True)
            datas = data_hub.data()

            for j, data in enumerate(datas):
                if n_graphs is None or n < n_graphs:
                    for N in [200, 1000]:
                        print(exp_cfg.exploration.explorer)
                        n_reuse = exp_cfg.exploration.explorer.eras[0]
                        s_vectors = [
                            tools.to_vector(s_signal, data.s_channels)
                            for s_signal in data.s_signals
                        ][:N]

                        graphs.coverage(data.s_channels,
                                        exp_cfg.testscov.buffer_size,
                                        s_vectors=s_vectors,
                                        swap_xy=False,
                                        title_text_font_size='6pt',
                                        title='{} {}'.format(
                                            exp_cfg.exp.key, j))
                        graphs.hold(True)
                        graphs.spread(data.s_channels,
                                      s_vectors=s_vectors[n_reuse:],
                                      swap_xy=False,
                                      e_radius=2.0)
                        graphs.hold(True)
                        graphs.spread(data.s_channels,
                                      s_vectors=s_vectors[:n_reuse],
                                      swap_xy=False,
                                      e_radius=2.0,
                                      e_color=red)
                        n += 1

    os.chdir(cwd)
Example #4
0
def adapt_graphs(ex_cfg, explorations, s_vectors, weight_history, mesh=None, title='no title'):
    s_channels = ex_cfg.s_channels

    tally_dict = {}
    for exploration, feedback in explorations:
        tally_dict.setdefault(exploration['from'], 0)
        tally_dict[exploration['from']] += 1
    print(tally_dict)

    if ex_cfg.div_algorithm == 'hyperball':
        graphs.coverage(s_channels, ex_cfg.threshold, s_vectors=s_vectors, title=title)
    else:
        assert ex_cfg.div_algorithm == 'grid'
        if mesh is not None:
            graphs.mesh(mesh, title=title)
    graphs.hold(True)
    graphs.spread(s_channels, s_vectors=s_vectors, e_radius=1.25, e_alpha=0.75)


    # interest measure
    colors = [graphs.BLUE, graphs.PINK]
    weight_lists = zip(*weight_history['data'])
    for i, weights in enumerate(weight_lists):
        graphs.perf_std(range(len(weights)), weights, [0.0 for _ in weights],
                        legend=weight_history['ex_names'][i], color=colors[i], alpha=0.5,
                        plot_width=1000, plot_height=300, title='diversity: {}'.format(title))
        graphs.hold(True)
    graphs.hold(False)

    # # usage with sliding window
    window = 100.0

    uuid_history = tuple(e[0]['uuid'] for e in explorations)
    for i, weights in enumerate(weight_lists):
        ex_uuid = weight_history['ex_uuids'][i]
        ex_name = weight_history['ex_names'][i]

        usage = [t_usage(window, t, ex_uuid, uuid_history) for t in range(len(uuid_history))]
        graphs.perf_std(range(len(usage)), usage, [0.0 for _ in usage], color=colors[i], alpha=0.5,
                          plot_width=1000, plot_height=300, title='usage: {}'.format(title), y_range=(0.0, 1.0))
        graphs.hold(True)

    graphs.hold(False)
    # print('{} {:.3f}'.format(env_name, np.average(errors)))
    return tally_dict
Example #5
0
        radius, alpha = 1.0, 0.35
        if ex_name == 'distrib_corner':
            radius, alpha = 0.75, 0.15

        plotting.circle([0.0], [0.0],
                        radius=1.0,
                        x_range=(-xy_range, xy_range),
                        y_range=(-xy_range, xy_range),
                        fill_color='#000000',
                        fill_alpha=0.075,
                        line_color=None,
                        title='goal distribution for {}'.format(ex_name))
        graphs.hold(True)
        graphs.spread(ex.s_channels,
                      s_vectors=(),
                      s_goals=s_goals,
                      g_radius=radius,
                      g_alpha=alpha,
                      grid=None,
                      title='{} goals'.format(ex_name))

        graphs.spread(ex.s_channels,
                      s_vectors=s_vectors,
                      s_goals=(),
                      e_radius=1.0,
                      e_alpha=0.35,
                      grid=None,
                      title=ex_name)

graphs.show()
Example #6
0
N = 10000

graphs.output_file('c0_fig2_mb_vs_gb.html')

for env_name in ['kin2_150', 'kin7_150', 'kin20_150', 'kin100_150']:
    for ex_name in ['random.motor', 'random.goal']:
        random.seed(0)

        # instanciating the environment
        env_cfg = envs.catalog[env_name]._deepcopy()
        env = environments.Environment.create(env_cfg)

        # instanciating the explorer
        ex_cfg = exs.catalog[ex_name]._deepcopy()
        ex_cfg.m_channels = env.m_channels
        ex_cfg.s_channels = env.s_channels
        ex = explorers.Explorer.create(ex_cfg)

        # running the exploration
        explorations, s_vectors, s_goals = factored.run_exploration(env, ex, N)

        # making graphs
        graphs.spread(env.s_channels,
                      s_vectors=s_vectors,
                      e_radius=1.3,
                      e_alpha=0.5,
                      grid=False,
                      title='{}::{}'.format(ex_name, env_name))

graphs.show()
Example #7
0
                            tools.to_vector(exploration['s_goal'],
                                            env.s_channels))
                    explorations.append((exploration, feedback))

                    if t + 1 in milestones:
                        idx = milestones.index(t + 1)
                        last_milestone = milestones[idx - 1]
                        alpha = 0.75 if t + 1 != N else 0.20
                        radius = 1.5 if t + 1 != N else 1.5

                        # making graphs
                        print('{: 6.0f}: {} ({})'.format(
                            t + 1, ex.m_channels[0].bounds, lrn_name))
                        graphs.spread(ex.s_channels,
                                      s_vectors=s_vectors[:last_milestone],
                                      e_alpha=0.50,
                                      title=']{}, {}] period : {} ({})'.format(
                                          last_milestone, t + 1,
                                          ex.m_channels[0].bounds, lrn_name))
                        graphs.hold(True)
                        graphs.spread(ex.s_channels,
                                      s_vectors=s_vectors[last_milestone:],
                                      e_alpha=alpha,
                                      e_radius=radius)
                        # display postures
                        graphs.hold(True)
                        graphs.posture_random(env,
                                              explorations[last_milestone:],
                                              n=5,
                                              radius_factor=0.50)
                        graphs.hold(False)
Example #8
0
kin_cfg = envs.catalog['kin20_150']
kin = environments.Environment.create(kin_cfg)

dataset = {'s_channels': kin.s_channels, 's_signals': []}
s_vectors = []

RES = 70

for i in range(RES):
    for j in range(RES):
        s_vector = [(k + 0.5) / RES * (c.bounds[1] - c.bounds[0]) + c.bounds[0]
                    for k, c in zip([i, j], kin.s_channels)]
        if s_vector[0]**2 + s_vector[1]**2 <= 1.0:
            s_signal = environments.tools.to_signal(s_vector, kin.s_channels)
            dataset['s_signals'].append(s_signal)
            s_vectors.append(s_vector)

datafile.save_file(dataset, '../../testsets/testset_kinone')

if __name__ == '__main__':
    import graphs
    graphs.output_file('c3_fig3_1_kin_testset.html')
    graphs.spread(kin.s_channels,
                  s_vectors=s_vectors,
                  e_radius=1.5,
                  e_alpha=0.75,
                  title='{} tests'.format(len(s_vectors)))
    graphs.grid().grid_line_color = 'white'
    graphs.show()
Example #9
0
        env = environments.Environment.create(env_cfg)

        ex_cfg = exs.catalog[ex_name]._deepcopy()
        ex_cfg.m_channels = env.m_channels
        ex_cfg.s_channels = env.s_channels
        ex = explorers.Explorer.create(ex_cfg)

        mesh = explorers.ExplorerMeshGrid({'res': RES}, env.s_channels,
                                          env.m_channels)

        # running the exploration
        prefix = '{} {}'.format(env_name, ex_name)
        explorations, s_vectors, s_goals = factored.run_exploration(
            env, ex, N, mesh=mesh, prefix=prefix)

        # making graphs
        graphs.spread(ex.s_channels,
                      s_vectors=s_vectors,
                      e_radius=1.3,
                      e_alpha=0.35,
                      title='{} {}'.format(env_name, ex_name))
        graphs.hold(True)
        graphs.posture_idxs(env,
                            explorations,
                            alpha=1.0,
                            idxs=[0, 1000, 2500, 5000, 7500],
                            radius_factor=0.75)
        # graphs.posture_extrema(env, explorations, alpha=1.0, radius_factor=0.75)

graphs.show()
Example #10
0
        random.seed(0)

        # instanciating the environment
        env_cfg = envs.catalog[env_name]._deepcopy()
        env = environments.Environment.create(env_cfg)

        ex_cfg = exs.catalog[ex_name]._deepcopy()
        ex_cfg.m_channels = env.m_channels
        ex_cfg.s_channels = env.s_channels
        ex = explorers.Explorer.create(ex_cfg)

        # running the exploration
        explorations, s_vectors, s_goals = factored.run_exploration(env, ex, N)

        # making graphs
        cov = factored.run_coverage(TAU, s_vectors)
        graphs.coverage(env.s_channels,
                        TAU,
                        s_vectors=s_vectors,
                        c_alpha=1.0,
                        title='cov={:.2f} {}::{}'.format(
                            cov, ex_name, env_name))
        graphs.hold(True)
        graphs.spread(env.s_channels,
                      s_vectors=s_vectors,
                      e_radius=2.0,
                      e_alpha=1.0,
                      title='{}:{}'.format(env_name, ex_name))

graphs.show()
Example #11
0

# Splitting the trials
s_vectors_pos, s_vectors_neg = [], []
for explo, s_vector in zip(explorations, s_vectors):
    if explo[0]['m_signal']['j0'] > 0:
        s_vectors_pos.append(s_vector)
    else:
        s_vectors_neg.append(s_vector)


graphs.output_file('c0_fig4_kin2_decomp.html')

# Positive Graph
graphs.spread(env.s_channels, s_vectors=s_vectors_pos,
              e_radius=1.0, e_alpha=0.5,
              title='{}::{} [positive]'.format(env_name, ex_name))
graphs.hold(True)
graphs.posture_signals(env, [{'j0': i, 'j1':-150+2*i} for i in range(150, -1, -10)],
                       color='#333333', alpha=0.5, swap_xy=True)
graphs.hold(False)

# Negative Graph
graphs.spread(env.s_channels, s_vectors=s_vectors_neg,
              e_radius=1.0, e_alpha=0.5,
              title='{}::{} [negative]'.format(env_name, ex_name))
graphs.hold(True)
graphs.posture_signals(env, [{'j0': -i, 'j1':-150+2*i} for i in range(0, 151, 10)],
                       color='#333333', alpha=0.5, swap_xy=True)
graphs.hold(False)
Example #12
0
        }
        ex = explorers.Explorer.create(ex_cfg, datasets=[dataset])

        # running the exploration
        explorations, s_vectors, s_goals = factored.run_exploration(
            env, ex, N, verbose=True)

        # making graphs
        milestones = [0, 100, 200, 500, 1000, 2000, 5000, N]
        for t in milestones[1:]:
            alpha = 0.5 if t == 100 else 0.25

            graphs.spread(ex.s_channels,
                          s_vectors=s_vectors[:t],
                          s_goals=(),
                          e_radius=2.0,
                          e_alpha=alpha,
                          x_range=(-1.05, 1.05),
                          y_range=(-1.05, 1.05),
                          title='demo:{}, t={}'.format(env_name, t))
            graphs.hold(True)
            graphs.posture_signals(env,
                                   dataset['m_signals'],
                                   radius_factor=0.35,
                                   alpha=0.75)
            graphs.hold(True)
            graphs.spread(ex.s_channels,
                          s_vectors=s_vectors[:1],
                          s_goals=(),
                          e_radius=2.0,
                          e_alpha=.0,
                          e_color='#DF6464')
Example #13
0
        random.seed(0)

        print(disturb, env_name)

        # instanciating the environment
        env_cfg = envs.catalog[env_name]
        env = environments.Environment.create(env_cfg)

        # instanciating the explorer
        ex_cfg = exs.catalog['random.goal']._deepcopy()
        ex_cfg.ex_1.learner.m_disturb = disturb
        ex_cfg.m_channels = env.m_channels
        ex_cfg.s_channels = env.s_channels
        ex = explorers.Explorer.create(ex_cfg)

        # running the exploration
        explorations, s_vectors, s_goals = factored.run_exploration(
            env, ex, N, verbose=True)

        # making graphs
        radius = {0.001: 1.0, 0.005: 1.0}.get(disturb, 1.25)
        graphs.spread(env.s_channels,
                      s_vectors=s_vectors,
                      s_goals=s_goals,
                      e_radius=radius,
                      e_alpha=0.25,
                      g_color=None,
                      title='{}::{}'.format(env_name, disturb))

graphs.show()
Example #14
0
ex = explorers.Explorer.create(ex_cfg, datasets=[dataset])

explorations, s_vectors, s_goals = factored.run_exploration(env, ex, N)

graphs.output_file('c5_fig5_2.3.4_reuse.html')

# Graph of reused effects in first env
s_vectors0 = []
for explo in explorations[:MB]:
    feedback = env0.execute(explo[0]['m_signal'])
    s_vectors0.append(
        explorers.tools.to_vector(feedback['s_signal'], env0.s_channels))

graphs.spread(env.s_channels,
              s_vectors=s_vectors0[:MB],
              e_radius=3.0,
              e_alpha=1.0,
              e_color='#DF6464',
              title='first arm - reused effects')
for e in explorations[:MB]:
    graphs.hold(True)
    graphs.posture_signals(env0, [e[0]['m_signal']],
                           alpha=ARM_ALPHA,
                           radius_factor=0.75)
graphs.hold(True)
graphs.spread(env.s_channels,
              s_vectors=s_vectors0[:MB],
              grid=False,
              e_radius=3.0,
              e_alpha=1.0,
              e_color='#DF6464')
graphs.hold(False)
Example #15
0
        # running the exploration
        explorations, s_vectors, s_goals = factored.run_exploration(env, ex, N)

        # making graphs
        for t in milestones:
            idxs = []
            for x_ in range(10):
                idxs.append(
                    find_rightmost(s_vectors[:t], -x_ / 10.0,
                                   -(x_ - 1) / 10.0))
            idxs.append(find_rightmost(s_vectors[:t], -0.960, -0.940))
            idxs.append(find_rightmost(s_vectors[:t], -0.940, -0.920))
            idxs.append(find_rightmost(s_vectors[:t], -0.920, -0.900))
            idxs.append(find_rightmost(s_vectors[:t], -0.900, -0.850))

            graphs.spread(env.s_channels,
                          s_vectors=s_vectors[:t],
                          e_radius=1.4,
                          e_alpha=0.5,
                          title='{}::{}::{}'.format(ex_name, env_name, t))

            for idx in idxs:
                graphs.hold(True)
                graphs.posture_signals(env, [explorations[idx][0]['m_signal']],
                                       color='#666666',
                                       alpha=0.50,
                                       radius_factor=0.6)

graphs.show()
Example #16
0
mesh = explorers.ExplorerMeshGrid({'res': RES}, env.s_channels, env.m_channels)

# running the exploration
explorations, s_vectors, s_goals = factored.run_exploration(env,
                                                            ex,
                                                            N,
                                                            mesh=mesh)
mesh_picks = pick(mesh)

# Spread Graph
for t in [MB, 200, 400, N]:
    alpha = 1.0 if t != N else 0.5
    graphs.spread(mesh.s_channels,
                  s_vectors=s_vectors[:t],
                  grid=False,
                  e_radius=1.5,
                  e_alpha=alpha,
                  title='first arm - {} steps'.format(t))
    # graphs.hold(True)
    # if t == N:
    #     graphs.bokeh_spread(mesh.s_channels, s_vectors=[tools.to_vector(s, mesh.s_channels) for m, s in mesh_picks],
    #                         e_color='#DF6464', e_radius=2.0, e_alpha=1.0)

# Mesh Graph
graphs.mesh(mesh,
            s_vectors=s_vectors,
            mesh_colors=mesh_colors,
            mesh_timescale=timescale,
            e_radius=1.5,
            e_alpha=0.5,
            tile_ratio=1.0,
Example #17
0
    # instanciating the environment
    env_name, env_cfg = envs.kin(dim=DIM, limit=LIMIT)
    env = environments.Environment.create(env_cfg)

    # instanciating the explorer
    ex_cfg = exs.catalog[ex_name]._deepcopy()
    ex_cfg.m_channels = env.m_channels
    ex_cfg.s_channels = env.s_channels
    ex = explorers.Explorer.create(ex_cfg)

    # running exploration
    explorations, s_vectors, s_goals = factored.run_exploration(env, ex, N, verbose=True)

    # finding leftmost posture
    min_y, min_idx = 0, -1
    for i, (x, y) in enumerate(s_vectors):
        if y < min_y:
            min_y   = y
            min_idx = i

    # making graphs
    graphs.spread(env.s_channels, s_vectors=s_vectors,
                  e_radius=1.5, e_alpha=0.25, plot_height=250, plot_width=800,
                  y_range=[-1, 0.05], x_range=[-1.05/8, 1.05/8],
                  title='{}::{}'.format(ex_name, env_name))
    graphs.hold(True)
    graphs.posture_signals(env, [explorations[min_idx][0]['m_signal']],
                           color='#666666', alpha=0.75, radius_factor=0.35)

graphs.show()