def test_krackhardt_kite_graph(self): """Weighted betweenness centrality: Krackhardt kite graph""" G = nx.krackhardt_kite_graph() G = nx.Graph(G) for e in G.edges: G.edges[e]["weight"] = 1 b_answer = { 0: 1.667, 1: 1.667, 2: 0.000, 3: 7.333, 4: 0.000, 5: 16.667, 6: 16.667, 7: 28.000, 8: 16.000, 9: 0.000, } for b in b_answer: b_answer[b] /= 2 b = nx.builtin.betweenness_centrality(G, weight="weight", normalized=False) for n in sorted(G): assert almost_equal(b[n], b_answer[n], 3)
def test_krackhardt_kite_graph_normalized(self): """Weighted betweenness centrality: Krackhardt kite graph normalized """ G = nx.krackhardt_kite_graph() G = nx.Graph(G) for e in G.edges: G.edges[e]["weight"] = 1 b_answer = { 0: 0.023, 1: 0.023, 2: 0.000, 3: 0.102, 4: 0.000, 5: 0.231, 6: 0.231, 7: 0.389, 8: 0.222, 9: 0.000, } b = nx.builtin.betweenness_centrality(G, weight="weight", normalized=True) for n in sorted(G): assert almost_equal(b[n], b_answer[n], 3)
def setup_class(cls): cls.K = nx.krackhardt_kite_graph() cls.P3 = nx.path_graph(3) cls.P4 = nx.path_graph(4) cls.K5 = nx.complete_graph(5) cls.C4 = nx.cycle_graph(4) cls.T = nx.balanced_tree(r=2, h=2) cls.Gb = nx.Graph() cls.Gb.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3), (2, 4), (4, 5), (3, 5)]) F = nx.florentine_families_graph() cls.F = F cls.LM = nx.les_miserables_graph() # Create random undirected, unweighted graph for testing incremental version cls.undirected_G = nx.fast_gnp_random_graph(n=100, p=0.6, seed=123) cls.undirected_G_cc = nx.builtin.closeness_centrality(cls.undirected_G)