def planned_place(self, fixed_container=None): fixed_container = [ 1 - self.tote_ID ] #TODO_M: planner only accepts bins 1,2,3 and names them as 0,1,2 if self.PlacingPlanner.visionType == 'real': #Update HM self.PlacingPlanner.update_real_height_map(fixed_container[0]) drop_pose = self.PlacingPlanner.place_object_local_best( None, containers=fixed_container ) #TODO_M : change placing to return drop_pose print('drop_pose', drop_pose) #~frank hack: drop pose drop_pose = get_params_yaml('bin' + str(fixed_container[0]) + '_pose') # Place object using grasping self.rel_pose, self.BoxBody = vision_transform_precise_placing_with_visualization( self.bbox_info, viz_pub=self.viz_array_pub, listener=self.listener) grasp(objInput=self.grasp_point, listener=self.listener, br=self.br, isExecute=self.isExecute, binId=fixed_container[0], flag=2, withPause=self.withPause, rel_pose=self.rel_pose, BoxBody=self.BoxBody, place_pose=drop_pose, viz_pub=self.viz_array_pub, is_drop=False, recorder=self.gdr)
def callFakeGrasping(self, prob, container): print('------- DOING GRASPING ------- ') print(' grasp_point = ', self.grasp_point) grasp(objInput=self.grasp_point, listener=self.listener, br=self.br, isExecute=self.isExecute, binId=container, flag=0, withPause=False, viz_pub=self.viz_array_pub) f = random.choice(os.listdir( self.FAKE_GRASPING_DIR)) #Get fake output for the primitive with open(os.path.join(self.FAKE_GRASPING_DIR, f), 'r') as infile: self.grasping_output = json.load(infile) self.grasping_output = self.grasping_output['primitive_output'] #Random decides if execution possible self.grasping_output['execution_possible'] = (np.random.rand() <= prob) self.execution_possible = self.grasping_output['execution_possible']
def callFakeGrasping(self, prob, container): print('------- DOING GRASPING ------- ') print(' grasp_point = ', self.grasp_point) grasp(objInput=self.grasp_point, listener=self.listener, br=self.br, isExecute=self.isExecute, binId=container, withPause=False, viz_pub=self.viz_array_pub) if self.is_control: #find new and improved grasp points back_img_list = self.controller.capture_images() best_grasp_dict = self.controller.control_policy( back_img_list, smirror=self.smirror) # self.controller.visualize_actions(with_CAM = False) # self.controller.visualize_best_action() print best_grasp_dict['delta_pos'] #go for new grasp Point self.grasping_output = grasp_correction( self.grasp_point, best_grasp_dict['delta_pos'], self.listener, self.br) retrieve(listener=self.listener, br=self.br, isExecute=self.isExecute, binId=container, withPause=False, viz_pub=self.viz_array_pub, ws_object=self.weightSensor) f = random.choice(os.listdir( self.FAKE_GRASPING_DIR)) #Get fake output for the primitive with open(os.path.join(self.FAKE_GRASPING_DIR, f), 'r') as infile: self.grasping_output = json.load(infile) self.grasping_output = self.grasping_output['primitive_output'] #Random decides if execution possible self.grasping_output['execution_possible'] = (np.random.rand() <= prob) self.execution_possible = self.grasping_output['execution_possible']
def getBestGraspingPoint(self, container): self.GetGraspPoints(num_points=100, container=container) self.execution_possible = False if self.num_pick_proposals == 0: #If no grasp point available self.grasp_point = None self.grasp_score = 0 return #Find the best point that it is not in collision: num_attempts = 0 num_it = 0 while not self.execution_possible and num_attempts < 20 and num_it < self.num_pick_proposals: #Each time try at most 20 attempts grasp_point = copy.deepcopy( list(self.all_pick_proposals[num_it][:])) num_it += 1 #If we already know it is a bad point, we do not try it again if grasp_point in self.bad_grasping_points: return #Check if in collision num_attempts += 1 checked_output = grasp(objInput=grasp_point, listener=self.listener, br=self.br, isExecute=False, binId=container, flag=0, withPause=False, viz_pub=self.viz_array_pub) if checked_output['execution_possible']: self.grasp_score = copy.deepcopy(self.all_pick_scores[num_it - 1]) self.grasp_point = copy.deepcopy(grasp_point) print('Best grasp point:', grasp_point, ' with score: ', self.grasp_score, 'in bin: ', container) return if grasp_point is not None: self.bad_grasping_points.append(grasp_point) self.bad_grasping_times.append(-1) print('NONE OF THE GRASPING POINTS WORKS') self.grasp_point = None self.grasp_score = 0 print('Best grasp point:', grasp_point, ' with score: ', self.grasp_score, 'in bin: ', container) return
def run_grasping(self, container=None): self.getBestGraspingPoint(container) grasp_proposal_msgs = Float32MultiArray() grasp_proposal_msgs.data = self.grasp_point if self.grasp_point is not None: self.grasp_proposal_pub.publish(grasp_proposal_msgs) comments_msgs = String() comments_msgs.data = self.experiment_description self.experiment_comments_pub.publish(comments_msgs) if self.grasp_point is None: print( 'It was suppose to do grasping, but there is no grasp proposal' ) self.execution_possible = False return if self.visionType != 'real': self.callFakeGrasping(prob=0.8, container=container) return #~visualize grasp proposals markers_msg = MarkerArray() m0 = createDeleteAllMarker('pick_proposals') markers_msg.markers.append(m0) for i in range(10): p.proposal_viz_array_pub.publish(markers_msg) ik.visualize_helper.visualize_grasping_proposals( self.proposal_viz_array_pub, self.all_grasp_proposals, self.listener, self.br) ik.visualize_helper.visualize_grasping_proposals( self.proposal_viz_array_pub, np.asarray([self.grasp_point]), self.listener, self.br, True) self.grasping_output = grasp(objInput=self.grasp_point, listener=self.listener, br=self.br, isExecute=self.isExecute, binId=container, flag=0, withPause=self.withPause, viz_pub=self.proposal_viz_array_pub, recorder=self.gdr) self.execution_possible = self.grasping_output['execution_possible']
def run_grasping(self, container=None): self.getBestGraspingPoint(container) #~Publish grasp proposal information grasp_proposal_msgs = Float32MultiArray() grasp_proposal_msgs.data = self.grasp_point if self.grasp_point is not None: self.grasp_proposal_pub.publish(grasp_proposal_msgs) comments_msgs = String() comments_msgs.data = self.experiment_description experiment_type_msgs = String() experiment_type_msgs.data = self.experiment_type self.experiment_comments_pub.publish(comments_msgs) self.experiment_type_pub.publish(experiment_type_msgs) else: print('There are no grasp proposal') self.execution_possible = False return #~Visualize grasp proposals markers_msg = MarkerArray() m0 = createDeleteAllMarker('pick_proposals') markers_msg.markers.append(m0) for i in range(10): self.proposal_viz_array_pub.publish(markers_msg) ik.visualize_helper.visualize_grasping_proposals( self.proposal_viz_array_pub, self.all_grasp_proposals, self.listener, self.br) ik.visualize_helper.visualize_grasping_proposals( self.proposal_viz_array_pub, np.asarray([self.grasp_point]), self.listener, self.br, True) #execute for grasp. Stop when the gripper is closed self.back_img_list = self.capture_images() #self.grasp_point=[0.92737001180648804, -0.391, -0.12441360205411911, 0.0, 0.0, -1.0, 0.067681394517421722, 0.059999998658895493, 0.0, 1.0, 0.0, 0.74888890981674194] self.grasping_output = grasp(objInput=self.grasp_point, listener=self.listener, br=self.br, isExecute=self.isExecute, binId=container, withPause=self.withPause, viz_pub=self.proposal_viz_array_pub, recorder=self.gdr) num_it = 0 print('gripper open: ', gripper.getGripperopening()) is_in_wrong_pose = (gripper.getGripperopening() < 0.04) while is_in_wrong_pose: ''' self.retrieve_output = retrieve(listener=self.listener, br=self.br, isExecute=self.isExecute, binId=container, withPause=self.withPause, viz_pub=self.proposal_viz_array_pub, recorder=self.gdr, ws_object=self.weightSensor, isShake=False) self.grasping_output = grasp(objInput=self.grasp_point, listener=self.listener, br=self.br, isExecute=self.isExecute, binId=container, withPause=self.withPause, viz_pub=self.proposal_viz_array_pub, recorder=self.gdr, open_hand=False) ''' # Motion heuristic initial_dz = 0.05 dz = .022 #should be related to object length ik.helper.move_cart(dz=initial_dz) rospy.sleep(0.5) ik.helper.move_cart(dz=-initial_dz) rospy.sleep(0.5) gripper.move(90) ik.helper.move_cart(dz=dz) rospy.sleep(0.5) #should be done in the direction of the gripper plane dx = 0.038 #.02*num_it ik.helper.move_cart_hand(self.listener, dx=dx, dy=0, dz=0, speedName='fastest') rospy.sleep(0.5) ik.helper.move_cart(dz=-dz) rospy.sleep(0.5) ik.helper.move_cart_hand(self.listener, dx=-dx, dy=0, dz=0, speedName='fastest') rospy.sleep(0.5) gripper.close() rospy.sleep(0.5) print('gripper_open', gripper.getGripperopening()) is_in_wrong_pose = (gripper.getGripperopening() < 0.04) if is_in_wrong_pose: gripper.move(90) rospy.sleep(0.5) ik.helper.move_cart(dz=dz) rospy.sleep(0.5) ik.helper.move_cart_hand(self.listener, dx=-dx, dy=0, dz=0, speedName='fastest') rospy.sleep(0.5) ik.helper.move_cart(dz=-dz) rospy.sleep(0.5) ik.helper.move_cart_hand(self.listener, dx=dx, dy=0, dz=0, speedName='fastest') rospy.sleep(0.5) gripper.close() rospy.sleep(0.5) self.gdr.save_data_recorded = False num_it += 1 is_in_wrong_pose = ( gripper.getGripperopening() < 0.04 ) #and (gripper.getGripperopening() > 0.015) self.retrieve_output = retrieve(listener=self.listener, br=self.br, isExecute=self.isExecute, binId=container, withPause=self.withPause, viz_pub=self.proposal_viz_array_pub, recorder=self.gdr, ws_object=self.weightSensor, isShake=False) self.execution_possible = self.retrieve_output['execution_possible']
def getBestGraspingPoint(self, container): self.GetGraspPoints(num_points=100, container=container) self.execution_possible = False if self.num_pick_proposals == 0: #If no grasp point available self.grasp_point = None self.grasp_score = 0 return #Find the best point that it is not in collision: num_attempts = 0 num_it = 0 while not self.execution_possible and num_attempts < 20 and num_it < self.num_pick_proposals: #Each time try at most 20 attempts grasp_point = copy.deepcopy( list(self.all_pick_proposals[num_it][:])) num_it += 1 #If we already know it is a bad point, we do not try it again if grasp_point in self.bad_grasping_points: return #Check if in collision num_attempts += 1 grasp_output = grasp(objInput=grasp_point, listener=self.listener, br=self.br, isExecute=False, binId=container, withPause=False, viz_pub=self.viz_array_pub) retrieve_output = retrieve(listener=self.listener, br=self.br, isExecute=False, binId=container, withPause=False, viz_pub=self.viz_array_pub, ws_object=self.weightSensor) if grasp_output['execution_possible'] and retrieve_output[ 'execution_possible']: self.grasp_score = copy.deepcopy(self.all_pick_scores[num_it - 1]) self.grasp_point = copy.deepcopy(grasp_point) #Visualize grasp markers_msg = MarkerArray() m0 = createDeleteAllMarker('pick_proposals') markers_msg.markers.append(m0) for i in range(10): self.proposal_viz_array_pub.publish(markers_msg) ik.visualize_helper.visualize_grasping_proposals( self.proposal_viz_array_pub, np.asarray([self.grasp_point]), self.listener, self.br, True) print('Best grasp point:', grasp_point, ' with score: ', self.grasp_score, 'in bin: ', container) return if grasp_point is not None: self.bad_grasping_points.append(grasp_point) self.bad_grasping_times.append(-1) print('NONE OF THE GRASPING POINTS WORKS') self.grasp_point = None self.grasp_score = 0 return
def run_grasping(self, container=None): self.getBestGraspingPoint(container) grasp_proposal_msgs = Float32MultiArray() grasp_proposal_msgs.data = self.grasp_point grasp_noise_msgs = Float32MultiArray() grasp_noise_msgs.data = self.grasp_noise if self.grasp_point is not None: self.grasp_proposal_pub.publish(grasp_proposal_msgs) self.grasp_noise_pub.publish(grasp_noise_msgs) comments_msgs = String() comments_msgs.data = self.experiment_description experiment_type_msgs = String() experiment_type_msgs.data = self.experiment_type self.experiment_comments_pub.publish(comments_msgs) self.experiment_type_pub.publish(experiment_type_msgs) if self.grasp_point is None: print( 'It was suppose to do grasping, but there is no grasp proposal' ) self.execution_possible = False return if self.visionType != 'real': self.callFakeGrasping(prob=0.8, container=container) return #~visualize grasp proposals markers_msg = MarkerArray() m0 = createDeleteAllMarker('pick_proposals') markers_msg.markers.append(m0) for i in range(10): self.proposal_viz_array_pub.publish(markers_msg) ik.visualize_helper.visualize_grasping_proposals( self.proposal_viz_array_pub, self.all_grasp_proposals, self.listener, self.br) ik.visualize_helper.visualize_grasping_proposals( self.proposal_viz_array_pub, np.asarray([self.grasp_point]), self.listener, self.br, True) #execute for grasp. Stop when the gripper is closed if self.is_control: back_img_list = self.controller.capture_images() self.grasping_output = grasp(objInput=self.grasp_point, listener=self.listener, br=self.br, isExecute=self.isExecute, binId=container, withPause=self.withPause, viz_pub=self.proposal_viz_array_pub, recorder=self.gdr) self.gdr.save_item(item_name='grasp_noise_std_dev', data=self.grasp_std) self.gdr.save_item(item_name='grasp_noise', data=self.grasp_noise) if self.is_control: if gripper.getGripperopening() > 0.017: print('[Planner]: ', gripper.getGripperopening()) # WE PAUSE THE RECOORDER TO SAVE DATA self.gdr.pause_recording() #find new and improved grasp points best_grasp_dict = self.controller.control_policy( back_img_list, smirror=self.smirror) # self.controller.visualize_actions(with_CAM = False) # self.controller.visualize_best_action(with_CAM = False) #save network information action_dict and best_action_dict self.gdr.save_item(item_name='action_dict', data=self.controller.action_dict) self.gdr.save_item(item_name='best_action_dict', data=self.controller.best_action_dict) #WE UNPAUSE THE RECORDER self.gdr.replay_recording() #go for new grasp Point self.grasping_output = grasp_correction( self.grasp_point, best_grasp_dict['delta_pos'], self.listener, self.br) self.gdr.save_data_recorded = True else: self.gdr.save_data_recorded = False #frank hack for double grasping if self.experiment_type == 'is_data_collection': if gripper.getGripperopening() > 0.017: self.grasping_output = grasp_correction( self.grasp_point, np.array([0, 0, 0]), self.listener, self.br) self.gdr.save_data_recorded = True else: self.gdr.save_data_recorded = False self.retrieve_output = retrieve(listener=self.listener, br=self.br, isExecute=self.isExecute, binId=container, withPause=self.withPause, viz_pub=self.proposal_viz_array_pub, recorder=self.gdr, ws_object=self.weightSensor) self.execution_possible = self.retrieve_output['execution_possible']
def run_grasping(self, container=None): self.getBestGraspingPoint(container) grasp_proposal_msgs = Float32MultiArray() grasp_proposal_msgs.data = self.grasp_point grasp_noise_msgs = Float32MultiArray() grasp_noise_msgs.data = self.grasp_noise if self.grasp_point is not None: self.grasp_proposal_pub.publish(grasp_proposal_msgs) self.grasp_noise_pub.publish(grasp_noise_msgs) comments_msgs = String() comments_msgs.data = self.experiment_description experiment_type_msgs = String() experiment_type_msgs.data = self.experiment_type self.experiment_comments_pub.publish(comments_msgs) self.experiment_type_pub.publish(experiment_type_msgs) if self.grasp_point is None: print( 'It was suppose to do grasping, but there is no grasp proposal' ) self.execution_possible = False return if self.visionType != 'real': self.callFakeGrasping(prob=0.8, container=container) return #~visualize grasp proposals markers_msg = MarkerArray() m0 = createDeleteAllMarker('pick_proposals') markers_msg.markers.append(m0) for i in range(10): self.proposal_viz_array_pub.publish(markers_msg) ik.visualize_helper.visualize_grasping_proposals( self.proposal_viz_array_pub, self.all_grasp_proposals, self.listener, self.br) ik.visualize_helper.visualize_grasping_proposals( self.proposal_viz_array_pub, np.asarray([self.grasp_point]), self.listener, self.br, True) #execute for grasp. Stop when the gripper is closed if self.is_control: back_img_list = self.controller.capture_images() #self.grasp_point=[0.92737001180648804, -0.391, -0.12441360205411911, 0.0, 0.0, -1.0, 0.067681394517421722, 0.059999998658895493, 0.0, 1.0, 0.0, 0.74888890981674194] self.background_images = self.capture_images() self.grasping_output = grasp(objInput=self.grasp_point, listener=self.listener, br=self.br, isExecute=self.isExecute, binId=container, withPause=self.withPause, viz_pub=self.proposal_viz_array_pub, recorder=self.gdr) if self.is_record == True: self.gdr.save_item(item_name='grasp_noise_std_dev', data=self.grasp_std) self.gdr.save_item(item_name='grasp_noise', data=self.grasp_noise) is_in_wrong_pose = (gripper.getGripperopening() < 0.03) #raw_input() if is_in_wrong_pose: self.retrieve_output = retrieve( listener=self.listener, br=self.br, isExecute=self.isExecute, binId=container, withPause=self.withPause, viz_pub=self.proposal_viz_array_pub, recorder=self.gdr, ws_object=self.weightSensor) gripper.open() gripper.close() self.grasping_output = grasp(objInput=self.grasp_point, listener=self.listener, br=self.br, isExecute=self.isExecute, binId=container, withPause=self.withPause, viz_pub=self.proposal_viz_array_pub, recorder=self.gdr) if self.is_control: if gripper.getGripperopening() > 0.017: print('[Planner]: ', gripper.getGripperopening()) # WE PAUSE THE RECOORDER TO SAVE DATA #self.gdr.pause_recording() #find new and improved grasp points best_grasp_dict, initial_score = self.controller.control_policy( back_img_list, smirror=self.smirror, use_COM=self.use_COM, use_raw=self.use_raw) # self.controller.visualize_actions(with_CAM = False) #self.controller.visualize_best_action(with_CAM = False) #pdb.set_trace() #save network information action_dict and best_action_dict #WE UNPAUSE THE RECORDER #self.gdr.replay_recording() self.gdr.save_item(item_name='initial_score', data=initial_score) self.gdr.save_item(item_name='best_grasp_dict', data=best_grasp_dict) self.gdr.save_item(item_name='action_dict', data=self.controller.action_dict) self.gdr.save_item(item_name='best_action_dict', data=self.controller.best_action_dict) #go for new grasp PointgraspPose self.grasping_output = grasp_correction( self.grasp_point, best_grasp_dict['delta_pos'], self.listener, self.br) second_best_grasp_dict, final_score = self.controller.control_policy( back_img_list, smirror=self.smirror, use_COM=self.use_COM, use_raw=self.use_raw) self.gdr.save_item(item_name='final_score', data=final_score) self.gdr.save_item(item_name='second_best_grasp_dict', data=second_best_grasp_dict) self.gdr.save_data_recorded = True else: self.gdr.save_data_recorded = False #frank hack for double grasping if self.experiment_type == 'is_data_collection': if gripper.getGripperopening() > 0.017: # self.grasping_output = grasp_correction(self.grasp_point, np.array([0,0,0]), self.listener, self.br) self.gdr.save_data_recorded = True else: self.gdr.save_data_recorded = False self.retrieve_output = retrieve(listener=self.listener, br=self.br, isExecute=self.isExecute, binId=container, withPause=self.withPause, viz_pub=self.proposal_viz_array_pub, recorder=self.gdr, ws_object=self.weightSensor) self.execution_possible = self.retrieve_output['execution_possible']