Example #1
0
 def test_atomic_rotate(self):
     """Test random rotation for atomic grid."""
     rad_pts = np.array([0.1, 0.5, 1])
     rad_wts = np.array([0.3, 0.4, 0.3])
     rad_grid = OneDGrid(rad_pts, rad_wts)
     degs = [3, 5, 7]
     atgrid = AtomGrid(rad_grid, degrees=degs)
     # make sure True and 1 is not the same result
     atgrid1 = AtomGrid(rad_grid, degrees=degs, rotate=True)
     atgrid2 = AtomGrid(rad_grid, degrees=degs, rotate=1)
     # test diff points, same weights
     assert not np.allclose(atgrid.points, atgrid1.points)
     assert not np.allclose(atgrid.points, atgrid2.points)
     assert not np.allclose(atgrid1.points, atgrid2.points)
     assert_allclose(atgrid.weights, atgrid1.weights)
     assert_allclose(atgrid.weights, atgrid2.weights)
     assert_allclose(atgrid1.weights, atgrid2.weights)
     # test same integral
     value = np.prod(atgrid.points**2, axis=-1)
     value1 = np.prod(atgrid.points**2, axis=-1)
     value2 = np.prod(atgrid.points**2, axis=-1)
     res = atgrid.integrate(value)
     res1 = atgrid1.integrate(value1)
     res2 = atgrid2.integrate(value2)
     assert_almost_equal(res, res1)
     assert_almost_equal(res1, res2)
     # test rotated shells
     for i in range(len(degs)):
         non_rot_shell = atgrid.get_shell_grid(i).points
         rot_shell = atgrid2.get_shell_grid(i).points
         rot_mt = R.random(random_state=1 + i).as_matrix()
         assert_allclose(rot_shell, non_rot_shell @ rot_mt)
Example #2
0
 def test_spherical_complete(self):
     """Test atomitc grid consistence for spherical integral."""
     num_pts = len(LEBEDEV_DEGREES)
     pts = HortonLinear(num_pts)
     for _ in range(10):
         start = np.random.rand() * 1e-5
         end = np.random.rand() * 10 + 10
         tf = PowerRTransform(start, end)
         rad_grid = tf.transform_1d_grid(pts)
         atgrid = AtomGrid(rad_grid, degrees=list(LEBEDEV_DEGREES.keys()))
         values = np.random.rand(len(LEBEDEV_DEGREES))
         pt_val = np.zeros(atgrid.size)
         for index, value in enumerate(values):
             pt_val[atgrid._indices[index]:atgrid._indices[index +
                                                           1]] = value
             rad_int_val = (value * rad_grid.weights[index] * 4 * np.pi *
                            rad_grid.points[index]**2)
             atgrid_int_val = np.sum(
                 pt_val[atgrid._indices[index]:atgrid._indices[index + 1]] *
                 atgrid.weights[atgrid._indices[index]:atgrid.
                                _indices[index + 1]])
             assert_almost_equal(rad_int_val, atgrid_int_val)
         ref_int_at = atgrid.integrate(pt_val)
         ref_int_rad = rad_grid.integrate(4 * np.pi * rad_grid.points**2 *
                                          values)
         assert_almost_equal(ref_int_at, ref_int_rad)
Example #3
0
    def test_poisson_solve_mtr_cmpl(self):
        """Test solve poisson equation and interpolate the result."""
        oned = GaussChebyshev(50)
        btf = BeckeRTransform(1e-7, 1.5)
        rad = btf.transform_1d_grid(oned)
        l_max = 7
        atgrid = AtomGrid(rad, degrees=[l_max])
        value_array = self.helper_func_gauss(atgrid.points)
        p_0 = atgrid.integrate(value_array)

        # test density sum up to np.pi**(3 / 2)
        assert_allclose(p_0, np.pi**1.5, atol=1e-4)
        sph_coor = atgrid.convert_cart_to_sph()[:, 1:3]
        spls_mt = Poisson._proj_sph_value(
            atgrid.rgrid,
            sph_coor,
            l_max // 2,
            value_array,
            atgrid.weights,
            atgrid.indices,
        )
        ibtf = InverseRTransform(btf)
        linsp = np.linspace(-1, 0.99, 50)
        bound = p_0 * np.sqrt(4 * np.pi)
        pois_mtr = Poisson.solve_poisson(spls_mt, linsp, bound, tfm=ibtf)
        assert pois_mtr.shape == (7, 4)
        near_rg_pts = np.array([1e-2, 0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.2])
        near_tf_pts = ibtf.transform(near_rg_pts)
        ref_short_res = [
            6.28286,  # 0.01
            6.26219,  # 0.1
            6.20029,  # 0.2
            6.09956,  # 0.3
            5.79652,  # 0.5
            5.3916,  # 0.7
            4.69236,  # 1.0
            4.22403,  # 1.2
        ]
        for i, j in enumerate(near_tf_pts):
            assert_almost_equal(
                Poisson.interpolate_radial(pois_mtr, j, 0, True) /
                near_rg_pts[i],
                ref_short_res[i] * np.sqrt(4 * np.pi),
                decimal=3,
            )
            matrix_result = Poisson.interpolate_radial(pois_mtr, j)
            assert_almost_equal(
                matrix_result[0, 0] / near_rg_pts[i],
                ref_short_res[i] * np.sqrt(4 * np.pi),
                decimal=3,
            )
            # test interpolate with sph
            result = Poisson.interpolate(pois_mtr, j, np.random.rand(5),
                                         np.random.rand(5))
            assert_allclose(result / near_rg_pts[i] - ref_short_res[i],
                            np.zeros(5),
                            atol=1e-3)
Example #4
0
    def test_raises_errors(self):
        """Test proper error raises."""
        oned = GaussChebyshev(50)
        btf = BeckeRTransform(1e-7, 1.5)
        rad = btf.transform_1d_grid(oned)
        l_max = 7
        atgrid = AtomGrid(rad, degrees=[l_max])
        value_array = self.helper_func_gauss(atgrid.points)
        p_0 = atgrid.integrate(value_array)

        # test density sum up to np.pi**(3 / 2)
        assert_allclose(p_0, np.pi**1.5, atol=1e-4)
        sph_coor = atgrid.convert_cart_to_sph()
        with self.assertRaises(ValueError):
            Poisson._proj_sph_value(
                atgrid.rgrid,
                sph_coor,
                l_max // 2,
                value_array,
                atgrid.weights,
                atgrid.indices,
            )
Example #5
0
    def test_poisson_solve(self):
        """Test the poisson solve function."""
        oned = GaussChebyshev(30)
        oned = GaussChebyshev(50)
        btf = BeckeRTransform(1e-7, 1.5)
        rad = btf.transform_1d_grid(oned)
        l_max = 7
        atgrid = AtomGrid(rad, degrees=[l_max])
        value_array = self.helper_func_gauss(atgrid.points)
        p_0 = atgrid.integrate(value_array)

        # test density sum up to np.pi**(3 / 2)
        assert_allclose(p_0, np.pi**1.5, atol=1e-4)
        sph_coor = atgrid.convert_cart_to_sph()[:, 1:3]
        spls_mt = Poisson._proj_sph_value(
            atgrid.rgrid,
            sph_coor,
            l_max // 2,
            value_array,
            atgrid.weights,
            atgrid.indices,
        )

        # test splines project fit gauss function well

        def gauss(r):
            return np.exp(-(r**2))

        for _ in range(20):
            coors = np.random.rand(10, 3)
            r = np.linalg.norm(coors, axis=-1)
            spl_0_0 = spls_mt[0, 0]
            interp_v = spl_0_0(r)
            ref_v = gauss(r) * np.sqrt(4 * np.pi)
            # 0.28209479 is the value in spherical harmonic Z_0_0
            assert_allclose(interp_v, ref_v, atol=1e-3)
        ibtf = InverseRTransform(btf)
        linsp = np.linspace(-1, 0.99, 50)
        bound = p_0 * np.sqrt(4 * np.pi)
        res_bv = Poisson.solve_poisson_bv(spls_mt[0, 0],
                                          linsp,
                                          bound,
                                          tfm=ibtf)

        near_rg_pts = np.array([1e-2, 0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.2])
        near_tf_pts = ibtf.transform(near_rg_pts)
        long_rg_pts = np.array([2, 3, 4, 5, 6, 7, 8, 9, 10])
        long_tf_pts = ibtf.transform(long_rg_pts)
        short_res = res_bv(near_tf_pts)[0] / near_rg_pts / (2 * np.sqrt(np.pi))
        long_res = res_bv(long_tf_pts)[0] / long_rg_pts / (2 * np.sqrt(np.pi))
        # ref are calculated with mathemetical
        # integrate[exp[-x^2 - y^2 - z^2] / sqrt[(x - a)^2 + y^2 +z^2], range]
        ref_short_res = [
            6.28286,  # 0.01
            6.26219,  # 0.1
            6.20029,  # 0.2
            6.09956,  # 0.3
            5.79652,  # 0.5
            5.3916,  # 0.7
            4.69236,  # 1.0
            4.22403,  # 1.2
        ]
        ref_long_res = [
            2.77108,  # 2
            1.85601,  # 3
            1.39203,  # 4
            1.11362,  # 5
            0.92802,  # 6
            0.79544,  # 7
            0.69601,  # 8
            0.61867,  # 9
            0.55680,  # 10
        ]
        assert_allclose(short_res, ref_short_res, atol=5e-4)
        assert_allclose(long_res, ref_long_res, atol=5e-4)
        # solve same poisson equation with gauss directly
        gauss_pts = btf.transform(linsp)
        res_gs = Poisson.solve_poisson_bv(gauss, gauss_pts, p_0)
        gs_int_short = res_gs(near_rg_pts)[0] / near_rg_pts
        gs_int_long = res_gs(long_rg_pts)[0] / long_rg_pts
        assert_allclose(gs_int_short, ref_short_res, 5e-4)
        assert_allclose(gs_int_long, ref_long_res, 5e-4)