Example #1
0
    def __init__(self, map: OccupancyGridMap, s_start: (int, int, int),
                 s_goal: (int, int, int)):
        """
        :param map: the ground truth map of the environment provided by gui
        :param s_start: start location
        :param s_goal: end location
        """
        ## we need to also update our occupancy grid map
        self.new_edges_and_old_costs = None

        # algorithm start
        self.s_start = s_start  # now takes in an x, y and z
        self.s_goal = s_goal  # now takes in an x, y and z
        self.s_last = s_start  # now takes in an x, y and z
        self.k_m = 0  # accumulation
        self.U = PriorityQueue()
        self.rhs = np.ones((map.x_dim, map.y_dim, map.z_dim)) * np.inf
        self.g = self.rhs.copy()

        self.sensed_map = OccupancyGridMap(x_dim=map.x_dim,
                                           y_dim=map.y_dim,
                                           z_dim=map.z_dim,
                                           exploration_setting='26N')

        self.rhs[self.s_goal] = 0
        self.U.insert(self.s_goal,
                      Priority(heuristic(self.s_start, self.s_goal), 0))
Example #2
0
    def __init__(self,
                 world,
                 s_start: (int, int),
                 s_goal: (int, int),
                 view_range=2):
        # init the graphs
        self.est_global_map = OccupancyGridMap(x_dim=world.x_dim,
                                               y_dim=world.y_dim,
                                               exploration_setting='8N')

        # real_graph
        self.gt_global_map: OccupancyGridMap = world

        # init variables
        self.view_range = view_range
        self.position = s_start
        self.goal = s_goal
        self.back_pointers = {}

        # procedure initialize
        self.U = PriorityQueue()
        self.k_m = 0
        self.RHS_VALS = {}
        self.G_VALS = {}  # empty set
        self.RHS_VALS[s_goal] = 0.0
        self.U.insert(s_goal, self.calculate_key(s_goal))

        # keeps track of the best path starting from goal to our position
        self.back_pointers[self.goal] = None

        # replan
        self.compute_shortest_path(s_start=s_start)
Example #3
0
    def __init__(self,
                 title="D* Lite Path Planning",
                 width=10,
                 height=10,
                 margin=0,
                 x_dim=100,
                 y_dim=50,
                 start=(0, 0),
                 goal=(50, 50),
                 viewing_range=3):

        self.width = width
        self.height = height
        self.margin = margin
        self.x_dim = x_dim
        self.y_dim = y_dim
        self.start = start
        self.current = start
        self.observation = {"pos": None, "type": None}
        self.goal = goal
        self.viewing_range = viewing_range

        pygame.init()

        # Set the 'width' and 'height' of the screen
        window_size = [(width + margin) * y_dim + margin,
                       (height + margin) * x_dim + margin]

        self.screen = pygame.display.set_mode(window_size)

        # create occupancy grid map
        """
        set initial values for the map occupancy grid
        |----------> y, column
        |           (x=0,y=2)
        |
        V (x=2, y=0)
        x, row
        """
        self.world = OccupancyGridMap(x_dim=x_dim,
                                      y_dim=y_dim,
                                      exploration_setting='8N')

        # Set title of screen
        pygame.display.set_caption(title)

        # set font
        pygame.font.SysFont('Comic Sans MS', 36)

        # Loop until the user clicks the close button
        self.done = False

        # used to manage how fast the screen updates
        self.clock = pygame.time.Clock()
Example #4
0
    def __init__(self,
                 title="Project 5 - Namala & Srivastava",
                 width=10,
                 height=10,
                 margin=0,
                 x_dim=100,
                 y_dim=50,
                 start=(0, 0),
                 goal=(50, 50),
                 start2=(0, 0),
                 goal2=(50, 50),
                 viewing_range=3):

        self.width = width
        self.height = height
        self.margin = margin
        self.x_dim = x_dim
        self.y_dim = y_dim
        self.start = start
        self.current = start
        self.start2 = start2
        self.current2 = start2
        self.observation = {"pos": None, "type": None}
        self.observation2 = {"pos": None, "type": None}
        self.goal = goal
        self.goal2 = goal2
        self.viewing_range = viewing_range

        pygame.init()

        # Set the 'width' and 'height' of the screen
        window_size = [(width + margin) * y_dim + margin,
                       (height + margin) * x_dim + margin]

        self.screen = pygame.display.set_mode(window_size)

        self.world = OccupancyGridMap(x_dim=x_dim,
                                      y_dim=y_dim,
                                      exploration_setting='8N')

        # Set title of screen
        pygame.display.set_caption(title)

        # set font
        pygame.font.SysFont('Comic Sans MS', 36)

        # Loop until the user clicks the close button
        self.done = False

        # used to manage how fast the screen updates
        self.clock = pygame.time.Clock()
Example #5
0
    def __init__(self, map: OccupancyGridMap, s_start: (int, int),
                 s_goal: (int, int)):
        self.new_edges_and_old_costs = None

        self.s_start = s_start
        self.s_goal = s_goal
        self.s_last = s_start
        self.k_m = 0
        self.U = PriorityQueue()
        self.rhs = np.ones((map.x_dim, map.y_dim)) * np.inf
        self.g = self.rhs.copy()

        self.sensed_map = OccupancyGridMap(x_dim=map.x_dim,
                                           y_dim=map.y_dim,
                                           exploration_setting='8N')

        self.rhs[self.s_goal] = 0
        self.U.insert(self.s_goal,
                      Priority(heuristic(self.s_start, self.s_goal), 0))
Example #6
0
class DStarLite:
    def __init__(self, map: OccupancyGridMap, s_start: (int, int, int),
                 s_goal: (int, int, int)):
        """
        :param map: the ground truth map of the environment provided by gui
        :param s_start: start location
        :param s_goal: end location
        """
        ## we need to also update our occupancy grid map
        self.new_edges_and_old_costs = None

        # algorithm start
        self.s_start = s_start  # now takes in an x, y and z
        self.s_goal = s_goal  # now takes in an x, y and z
        self.s_last = s_start  # now takes in an x, y and z
        self.k_m = 0  # accumulation
        self.U = PriorityQueue()
        self.rhs = np.ones((map.x_dim, map.y_dim, map.z_dim)) * np.inf
        self.g = self.rhs.copy()

        self.sensed_map = OccupancyGridMap(x_dim=map.x_dim,
                                           y_dim=map.y_dim,
                                           z_dim=map.z_dim,
                                           exploration_setting='26N')

        self.rhs[self.s_goal] = 0
        self.U.insert(self.s_goal,
                      Priority(heuristic(self.s_start, self.s_goal), 0))

    def calculate_key(self, s: (int, int, int)):
        """
        :param s: the vertex we want to calculate key
        :return: Priority class of the two keys
        """
        k1 = min(self.g[s], self.rhs[s]) + heuristic(self.s_start,
                                                     s) + self.k_m
        k2 = min(self.g[s], self.rhs[s])
        return Priority(k1, k2)

    def c(self, u: (int, int, int), v: (int, int, int)) -> float:
        """
        calcuclate the cost between nodes
        :param u: from vertex
        :param v: to vertex
        :return: euclidean distance to traverse. inf if obstacle in path
        """
        if not self.sensed_map.is_unoccupied(
                u) or not self.sensed_map.is_unoccupied(v):
            return float('inf')
        else:
            return heuristic(u, v)

    def contain(self, u: (int, int, int)):
        return u in self.U.vertices_in_heap

    def update_vertex(self, u: (int, int, int)):
        if self.g[u] != self.rhs[u] and self.contain(u):
            self.U.update(u, self.calculate_key(u))
        elif self.g[u] != self.rhs[u] and not self.contain(u):
            self.U.insert(u, self.calculate_key(u))
        elif self.g[u] == self.rhs[u] and self.contain(u):
            self.U.remove(u)

    def compute_shortest_path(self):
        while self.U.top_key() < self.calculate_key(
                self.s_start) or self.rhs[self.s_start] > self.g[self.s_start]:
            u = self.U.top()
            k_old = self.U.top_key()
            k_new = self.calculate_key(u)

            if k_old < k_new:
                self.U.update(u, k_new)
            elif self.g[u] > self.rhs[u]:
                self.g[u] = self.rhs[u]
                self.U.remove(u)
                pred = self.sensed_map.succ(vertex=u)
                for s in pred:
                    if s != self.s_goal:
                        self.rhs[s] = min(self.rhs[s],
                                          self.c(s, u) + self.g[u])
                    self.update_vertex(s)
            else:
                self.g_old = self.g[u]
                self.g[u] = float('inf')
                pred = self.sensed_map.succ(vertex=u)
                pred.append(u)
                for s in pred:
                    if self.rhs[s] == self.c(s, u) + self.g_old:
                        if s != self.s_goal:
                            min_s = float('inf')
                            succ = self.sensed_map.succ(vertex=s)
                            for s_ in succ:
                                temp = self.c(s, s_) + self.g[s_]
                                if min_s > temp:
                                    min_s = temp
                            self.rhs[s] = min_s
                    self.update_vertex(u)

    def rescan(self) -> Vertices:

        new_edges_and_old_costs = self.new_edges_and_old_costs
        self.new_edges_and_old_costs = None
        return new_edges_and_old_costs

    def move_and_replan(self, robot_position: (int, int, int)):
        path = [robot_position]
        self.s_start = robot_position
        self.s_last = self.s_start
        self.compute_shortest_path()

        while self.s_start != self.s_goal:
            assert (self.rhs[self.s_start] !=
                    float('inf')), "There is no known path!"

            succ = self.sensed_map.succ(self.s_start, avoid_obstacles=False)
            min_s = float('inf')
            arg_min = None
            for s_ in succ:
                temp = self.c(self.s_start, s_) + self.g[s_]
                if temp < min_s:
                    min_s = temp
                    arg_min = s_

            ### algorithm sometimes gets stuck here for some reason !!! FIX
            self.s_start = arg_min
            path.append(self.s_start)
            # scan graph for changed costs
            changed_edges_with_old_cost = self.rescan()
            #print("len path: {}".format(len(path)))
            # if any edge costs changed
            if changed_edges_with_old_cost:
                self.k_m += heuristic(self.s_last, self.s_start)
                self.s_last = self.s_start

                # for all directed edges (u,v) with changed edge costs
                vertices = changed_edges_with_old_cost.vertices
                for vertex in vertices:
                    v = vertex.pos
                    succ_v = vertex.edges_and_c_old
                    for u, c_old in succ_v.items():
                        c_new = self.c(u, v)
                        if c_old > c_new:
                            if u != self.s_goal:
                                self.rhs[u] = min(self.rhs[u],
                                                  self.c(u, v) + self.g[v])
                        elif self.rhs[u] == c_old + self.g[v]:
                            if u != self.s_goal:
                                min_s = float('inf')
                                succ_u = self.sensed_map.succ(vertex=u)
                                for s_ in succ_u:
                                    temp = self.c(u, s_) + self.g[s_]
                                    if min_s > temp:
                                        min_s = temp
                                self.rhs[u] = min_s
                            self.update_vertex(u)
            self.compute_shortest_path()

        if len(path) > 1:
            return path, self.g, self.rhs

        return None, None, None
Example #7
0
class Animation:
    def __init__(self,
                 title="Project 5 - Namala & Srivastava",
                 width=10,
                 height=10,
                 margin=0,
                 x_dim=100,
                 y_dim=50,
                 start=(0, 0),
                 goal=(50, 50),
                 start2=(0, 0),
                 goal2=(50, 50),
                 viewing_range=3):

        self.width = width
        self.height = height
        self.margin = margin
        self.x_dim = x_dim
        self.y_dim = y_dim
        self.start = start
        self.current = start
        self.start2 = start2
        self.current2 = start2
        self.observation = {"pos": None, "type": None}
        self.observation2 = {"pos": None, "type": None}
        self.goal = goal
        self.goal2 = goal2
        self.viewing_range = viewing_range

        pygame.init()

        # Set the 'width' and 'height' of the screen
        window_size = [(width + margin) * y_dim + margin,
                       (height + margin) * x_dim + margin]

        self.screen = pygame.display.set_mode(window_size)

        self.world = OccupancyGridMap(x_dim=x_dim,
                                      y_dim=y_dim,
                                      exploration_setting='8N')

        # Set title of screen
        pygame.display.set_caption(title)

        # set font
        pygame.font.SysFont('Comic Sans MS', 36)

        # Loop until the user clicks the close button
        self.done = False

        # used to manage how fast the screen updates
        self.clock = pygame.time.Clock()

    def get_position(self):
        return self.current, self.current2

    def set_position(self, pos: (int, int), pos2: (int, int)):
        self.current = pos
        self.current2 = pos2

    def get_goal(self):
        return self.goal

    def set_goal(self, goal: (int, int)):
        self.goal = goal

    def set_start(self, start: (int, int)):
        self.start = start

    def display_path(self, path=None):
        if path is not None:
            for step in path:
                # draw a moving robot, based on current coordinates
                step_center = [round(step[1] * (self.width + self.margin) + self.width / 2) + self.margin,
                               round(step[0] * (self.height + self.margin) + self.height / 2) + self.margin]

                # draw robot position as red circle
                pygame.draw.circle(self.screen, START, step_center, round(self.width / 2) - 2)

    def display_path2(self, path2=None):
        if path2 is not None:
            for step in path2:
                # draw a moving robot, based on current coordinates
                step_center = [round(step[1] * (self.width + self.margin) + self.width / 2) + self.margin,
                               round(step[0] * (self.height + self.margin) + self.height / 2) + self.margin]

                # draw robot position as red circle
                pygame.draw.circle(self.screen, START2, step_center, round(self.width / 2) - 2)

    def display_obs(self, observations=None):
        if observations is not None:
            for o in observations:
                pygame.draw.rect(self.screen, GRAY1, [(self.margin + self.width) * o[1] + self.margin,
                                                      (self.margin + self.height) * o[0] + self.margin,
                                                      self.width,
                                                      self.height])

    def collision_detector(self, path, path2):
        for i in range(-5 + path[0][0], 5 + path[0][0]):
            for j in range(-5 + path[0][1], 5 + path[0][1]):
                if (i, j) in path2[:5]:
                    return True
        return False

    def run_game(self, path=None, path2=None):
        for i in range(self.x_dim):
            for j in range(self.y_dim):
                if obstacle(i, j):
                    grid_cell = (i, j)
                    self.world.set_obstacle(grid_cell)
        ##### Put the collision checker
        if self.collision_detector(path=path, path2=path2):
            print("Collision Detected")
            f = open("position.txt", "r")
            m = int(f.read())
            plt.figure()
            x_dim = m + len(path)
            y_dim = m + len(path2)
            obstacle_list = list()

            coordination_map = OccupancyGridMap(x_dim, y_dim)
            for i in range(-5 + m, 5 + m):
                for j in range(-5 + m, 5 + m):
                    coordination_map.set_obstacle((i, j))
                    obstacle_list.append((i, j))
            obstacle_list = np.array(obstacle_list)
            slam = SLAM(map=coordination_map,
                        view_range=max(x_dim, y_dim))

            dstar = DStarLite(map=coordination_map, s_start=(0, 0), s_goal=(x_dim - 1, y_dim - 1))
            coordinationPath, g, rhs = dstar.move_and_replan(robot_position=(0, 0))
            # slam
            new_edges_and_old_costs, slam_map = slam.rescan(global_position=(0, 0))
            dstar.new_edges_and_old_costs = new_edges_and_old_costs
            dstar.sensed_map = slam_map
            coordinationPath1, g, rhs = dstar.move_and_replan(robot_position=(0, 0))

            coordinationPath = np.array(coordinationPath1)
            print("Coordination Path", coordinationPath)
            print("Obstacle LIST", obstacle_list)

            plt.plot(coordinationPath[:, 0], coordinationPath[:, 1], '-b')
            plt.plot(obstacle_list[:, 0], obstacle_list[:, 1], '.r')

            plt.xlabel('Robot 1 Path Steps')
            plt.ylabel('Robot 2 Path Steps')
            plt.show()

            robot1_movements = coordinationPath[:, 0]
            robot2_movements = coordinationPath[:, 1]

            occurrences1 = list()
            occurrences2 = list()
            for i in range(min(robot1_movements), max(robot1_movements)):
                occurrences1.append(np.count_nonzero(robot1_movements == i))
            for i in range(min(robot2_movements), max(robot2_movements)):
                occurrences2.append(np.count_nonzero(robot2_movements == i))

            robot1_stops = list()
            for a in range(0,len(occurrences1)):
                if occurrences1[a]>1:
                    robot1_stops.append((a, occurrences1[a]))

            robot2_stops = list()
            for a in range(0, len(occurrences2)):
                if occurrences2[a] > 1:
                    robot2_stops.append((a, occurrences2[a]))
            print(robot1_stops)
            print(robot2_stops)
            # The remaining path of robot 1 and robot 2
            f = open("R1_Path.txt", "a")
            for each in path:
                f.write(str(each)+"!")
            f.close()
            f = open("R2_Path.txt", "a")
            for each in path2:
                f.write(str(each)+"!")
            f.close()
            f = open("R1_Path.txt", 'r')
            r1_path = f.read()
            f.close()
            f = open("R2_Path.txt", 'r')
            r2_path = f.read()
            f.close()
            r1_path_list = r1_path.split('!')
            r2_path_list = r2_path.split('!')
            r1_plot_list = list()
            r2_plot_list = list()
            for each in r1_path_list:
                try:
                    temp = each[1:-1].split(', ')
                    r1_plot_list.append((int(temp[0]),int(temp[1])))
                except:
                    pass
            for each in r2_path_list:
                try:
                    temp = each[1:-1].split(', ')
                    r2_plot_list.append((int(temp[0]),int(temp[1])))
                except:
                    pass
            main_path_r1 = list()
            main_path_r2 = list()
            if len(robot1_stops)>0:
                for each in robot1_stops:
                    index = each[0]
                    iterations = each[1]
                    counter = -1
                    for anothereach in r1_plot_list:
                        counter = counter + 1
                        main_path_r1.append(anothereach)
                        if counter == index:
                            for i in range(iterations - 1):
                                main_path_r1.append(anothereach)
                            break
            if len(robot2_stops) == 0:
                main_path_r1 = r1_plot_list
            if len(robot2_stops) > 0:
                index_list_r2 = list()
                iteration_list_r2 =list()
                for each in robot2_stops:
                    index_list_r2.append(each[0])
                    iteration_list_r2.append(each[1])
                counter = -1
                for anothereach in r2_plot_list:
                    counter = counter + 1
                    main_path_r2.append(anothereach)
                    if counter in index_list_r2:
                        for i in range(0, iteration_list_r2[index_list_r2.index(counter)]-1):
                            main_path_r2.append(anothereach)


            if len(robot2_stops) == 0:
                main_path_r2 = r2_plot_list

            print("######")
            print(r1_plot_list)
            print("######")
            print(r2_plot_list)
            print("MAIN1\n")
            print(main_path_r1)
            print("MAIN2\n")
            print(main_path_r2)



            raise SystemExit()
            # # x_dim = len(path)+ len(FILE)
            # # y_dim = len(path2)+ len(FILE2)
            # #### D STAR AGAIN :
            #         '''
            #         coordination_map = OccupancyGridMap(x_dim, y_dim)
            #         dstar = DStarLite(map=coordination_map,
            #         s_start=(0,0),
            #         s_goal=(xdim-1, ydim-1))
            #         path, g, rhs = dstar.move_and_replan(robot_position=s_start)
            #       '''
        #### X_DIM = length of R1
        ##### Y_DIM = length of R2
        pygame.font.init()  # you have to call this at the start,
        # if you want to use this module.
        myfont = pygame.font.SysFont('Times New Roman', 30)
        textsurface = myfont.render('Group 7: Alkesh, Prannoy', False, (119, 136, 153))

        if path is None:
            path = []
        if path2 is None:
            path2 = []

        grid_cell = None
        self.cont = False
        for event in pygame.event.get():

            if event.type == pygame.QUIT:  # if user clicked close
                print("quit")
                self.done = True  # flag that we are done so we can exit loop

            elif (event.type == pygame.KEYDOWN and event.key == pygame.K_SPACE) or self.cont:

                f = open("R1_Path.txt", "a")
                f.write(str(path[0]) + ",")
                f.close()
                f = open("R2_Path.txt", "a")
                f.write(str(path2[0]) + ",")
                f.close()
                # space bar pressed. call next action
                if path:
                    if len(path) > 1:
                        (x, y) = path[1]
                    else:
                        (x, y) = path[0]
                if not path:
                    pass
                if path2:
                    if len(path2) > 1:
                        (x2, y2) = path2[1]
                    else:
                        (x2, y2) = path2[0]
                if not path2:
                    pass

                # for each in path: #R1
                #     if each not in path2 and not obstacle(each[0], each[1]): #R2
                #         for i in range(each[0] - 10, each[0] + 10):
                #             for j in range(each[1] - 10, each[1] + 10):
                #                 if i < 100 and j < 100:
                #                     if not self.world.is_unoccupied((i, j)) and not obstacle(i, j):
                #                         self.world.remove_obstacle((i, j))
                # for each in path:
                #     if each in path2:
                #         for i in range(each[0] - 2, each[0] + 2):
                #             for j in range(each[1] - 2, each[1] + 2):
                #                 if i < 100 and j < 100:
                #                     self.world.set_obstacle((i, j))
                # self.world.set_obstacle(each)

                self.set_position((x, y), (x2, y2))

                # for i in range(-1 * int(self.viewing_range), int(self.viewing_range)):
                #     for j in range(-1 * int(self.viewing_range), int(self.viewing_range)):
                #
                #         if obstacle(x + i, y + j):
                #             grid_cell = (x + i, y + j)
                #             self.world.set_obstacle(grid_cell)
                #         if obstacle(x2 + i, y2 + j):
                #             grid_cell = ((x2 + i, y2 + j))
                # self.world.set_obstacle(grid_cell)
            elif event.type == pygame.KEYUP and event.key == pygame.K_SPACE:
                pass

            elif event.type == pygame.KEYDOWN and event.key == pygame.K_BACKSPACE:
                print("backspace automates the press space")
                if not self.cont:
                    self.cont = True
                else:
                    self.cont = False

            # set obstacle by holding left-click
            elif pygame.mouse.get_pressed()[0]:
                # User clicks the mouse. Get the position
                (col, row) = pygame.mouse.get_pos()

                # change the x/y screen coordinates to grid coordinates
                x = row // (self.height + self.margin)
                y = col // (self.width + self.margin)

                # turn pos into cell
                grid_cell = (x, y)

                # set the location in the grid map
                if self.world.is_unoccupied(grid_cell):
                    self.world.set_obstacle(grid_cell)
                    self.observation = {"pos": grid_cell, "type": OBSTACLE}

            # remove obstacle by holding right-click
            elif pygame.mouse.get_pressed()[2]:
                # User clicks the mouse. Get the position
                (col, row) = pygame.mouse.get_pos()

                # change the x/y screen coordinates to grid coordinates
                x = row // (self.height + self.margin)
                y = col // (self.width + self.margin)

                # turn pos into cell
                grid_cell = (x, y)

                # set the location in the grid map
                if not self.world.is_unoccupied(grid_cell):
                    print("grid cell: ".format(grid_cell))
                    self.world.remove_obstacle(grid_cell)
                    self.observation = {"pos": grid_cell, "type": UNOCCUPIED}

        # set the screen background
        self.screen.fill(BLACK)

        # draw the grid
        for row in range(self.x_dim):
            for column in range(self.y_dim):
                # color the cells
                pygame.draw.rect(self.screen, colors[self.world.occupancy_grid_map[row][column]],
                                 [(self.margin + self.width) * column + self.margin,
                                  (self.margin + self.height) * row + self.margin,
                                  self.width,
                                  self.height])

        self.display_path(path=path)
        self.display_path2(path2=path2)
        # fill in the goal cell with green
        pygame.draw.rect(self.screen, GOAL, [(self.margin + self.width) * self.goal[1] + self.margin,
                                             (self.margin + self.height) * self.goal[0] + self.margin,
                                             self.width,
                                             self.height])
        # fill in the goal cell with green
        pygame.draw.rect(self.screen, GOAL, [(self.margin + self.width) * self.goal[1] + self.margin,
                                             (self.margin + self.height) * self.goal[0] + self.margin,
                                             self.width,
                                             self.height])
        pygame.draw.rect(self.screen, GOAL2, [(self.margin + self.width) * self.goal2[1] + self.margin,
                                              (self.margin + self.height) * self.goal2[0] + self.margin,
                                              self.width,
                                              self.height])

        # draw a moving robot, based on current coordinates
        robot_center = [round(self.current[1] * (self.width + self.margin) + self.width / 2) + self.margin,
                        round(
                            self.current[0] * (self.height + self.margin) + self.height / 2) + self.margin]
        robot_center2 = [round(self.current2[1] * (self.width + self.margin) + self.width / 2) + self.margin,
                         round(
                             self.current2[0] * (self.height + self.margin) + self.height / 2) + self.margin]

        # draw robot position as red circle
        pygame.draw.circle(self.screen, START, robot_center, round(self.width / 2) - 2)

        # draw robot local grid map (viewing range)
        pygame.draw.rect(self.screen, LOCAL_GRID,
                         [robot_center[0] - self.viewing_range * (self.height + self.margin),
                          robot_center[1] - self.viewing_range * (self.width + self.margin),
                          2 * self.viewing_range * (self.height + self.margin),
                          2 * self.viewing_range * (self.width + self.margin)], 2)
        pygame.draw.rect(self.screen, LOCAL_GRID,
                         [robot_center2[0] - self.viewing_range * (self.height + self.margin),
                          robot_center2[1] - self.viewing_range * (self.width + self.margin),
                          2 * self.viewing_range * (self.height + self.margin),
                          2 * self.viewing_range * (self.width + self.margin)], 2)

        # set game tick
        self.clock.tick(20)
        self.screen.blit(textsurface, (self.screen.get_width() // 2 - 150, 0))

        # go ahead and update screen with that we've drawn
        pygame.display.flip()

    # be 'idle' friendly. If you forget this, the program will hang on exit
    pygame.quit()
Example #8
0
class DstarLite(object):
    def __init__(self,
                 world,
                 s_start: (int, int),
                 s_goal: (int, int),
                 view_range=2):
        # init the graphs
        self.est_global_map = OccupancyGridMap(x_dim=world.x_dim,
                                               y_dim=world.y_dim,
                                               exploration_setting='8N')

        # real_graph
        self.gt_global_map: OccupancyGridMap = world

        # init variables
        self.view_range = view_range
        self.position = s_start
        self.goal = s_goal
        self.back_pointers = {}

        # procedure initialize
        self.U = PriorityQueue()
        self.k_m = 0
        self.RHS_VALS = {}
        self.G_VALS = {}  # empty set
        self.RHS_VALS[s_goal] = 0.0
        self.U.insert(s_goal, self.calculate_key(s_goal))

        # keeps track of the best path starting from goal to our position
        self.back_pointers[self.goal] = None

        # replan
        self.compute_shortest_path(s_start=s_start)

    def g(self, node: (int, int)):
        """
        :param node:
        :return:
        """
        return self.G_VALS.get(node, float('inf'))

    def rhs(self, node: (int, int)):
        """
        :param node:
        :return:
        """
        # if node == self.position:
        #    return 0
        return self.RHS_VALS.get(node,
                                 float('inf')) if node != self.goal else 0

    def calculate_key(self, node: (int, int)):
        """
        procedure CalculateKey(s)
        :param node:
        :return:
        """
        g_rhs = min([self.g(node), self.rhs(node)])
        # return g_rhs + heuristic(node, self.position), g_rhs
        return g_rhs + self.est_global_map.cost(
            node, self.position) + self.k_m, g_rhs

    def update_vertex(self, node: (int, int)):
        """
        procedure UpdateVertex(u)
        :param node:
        :return:
        """
        if node != self.goal:
            self.RHS_VALS[node] = self.calculate_rhs(node)

        if node in self.U:
            self.U.delete(node)

        if self.g(node) != self.rhs(node):
            self.U.insert(node, self.calculate_key(node))

    def update_vertices(self, nodes):
        """
        :param nodes:
        :return:
        """
        for node in nodes:
            self.update_vertex(node=node)

    def lookahead_cost(self, node, neighbor):
        """
        :param node:
        :param neighbor:
        :return:
        """
        return self.g(neighbor) + self.est_global_map.cost(neighbor, node)

    def lowest_cost_neighbor(self, node: (int, int)) -> (int, int):
        """
        :param node:
        :return:
        """
        cost = partial(self.lookahead_cost, node)
        best_choice = min(self.est_global_map.neighbors(node), key=cost)
        return best_choice

    def calculate_rhs(self, node: (int, int)) -> float:
        """
        :param node:
        :return:
        """
        lowest_cost_neighbor = self.lowest_cost_neighbor(node)
        self.back_pointers[node] = lowest_cost_neighbor
        return self.lookahead_cost(node, lowest_cost_neighbor)

    def compute_shortest_path(self, s_start: (int, int)):
        """
        Procedure ComputeShortestPath()
        :return:
        """
        last_nodes = deque(maxlen=10)

        while self.U.top_key(s_start) < self.calculate_key(
                s_start) or self.rhs(s_start) != self.g(s_start):
            u = self.U.pop_top()
            k_old = self.U.top_key(s_start)

            # NOT PART OF ALGORITHM!
            last_nodes.append(u)
            if len(last_nodes) == 10 and len(set(last_nodes)) < 3:
                raise Exception("Failed! Stuck in a loop")
            # NOT PART OF ALGORITHM!

            k_new = self.calculate_key(u)
            if k_old < k_new:
                self.U.insert(
                    u, k_new
                )  # Essentially update, since u is already popped, and we put it back again
            elif self.g(node=u) > self.rhs(node=u):
                self.G_VALS[u] = self.rhs(node=u)

                # since u is already removed, we update vertices
                self.update_vertices(nodes=self.est_global_map.neighbors(u))
            else:
                self.G_VALS[u] = float('inf')
                self.update_vertices(nodes=self.est_global_map.neighbors(u) +
                                     [u])  # list + list = list

        return self.back_pointers.copy(), self.G_VALS.copy()

    def move_and_rescan(self, position: (int, int)):
        """
        Procedure Main()
        :return:
        """
        self.robot_position = position
        self.position = position
        # rescan local area
        local_observation = self.gt_global_map.local_observation(
            global_position=self.robot_position, view_range=self.view_range)
        # update global map from local data
        # return new obstacles added to the map
        cells_with_new_cost = self.est_global_map.update_global_from_local_grid(
            local_grid=local_observation)

        # make current position as last node
        s_start = self.position
        s_last = s_start

        yield s_last, cells_with_new_cost

        # while we yet haven't reached the goal
        visited = {s_start}
        while s_start != self.goal:
            print("s_start: {}, position: {}".format(s_start,
                                                     self.robot_position))
            if self.rhs(s_start) == float('inf'):
                raise Exception("No path found!")

            # find next lowest cost neighbor
            s_start = self.lowest_cost_neighbor(s_start)
            # move to next lowest cost neighbor. This might take a while
            self.position = s_start

            # scan graph for changed edge costs
            local_observation = self.est_global_map.local_observation(
                global_position=self.position, view_range=self.view_range)

            # FIX NEEDED. This should not return cells_with_new_cost if there not in local view
            cells_with_new_cost = self.est_global_map.update_global_from_local_grid(
                local_grid=local_observation)

            # if any edge cost changed
            if cells_with_new_cost:
                # print("cells with new cost {}".format(cells_with_new_cost))
                self.k_m += self.est_global_map.cost(
                    s_last, s_start)  # update heuristics
                s_last = s_start
                self.update_vertices({
                    node
                    for cell in cells_with_new_cost
                    for node in self.est_global_map.neighbors(cell)
                    if self.est_global_map.is_unoccupied(node)
                })  # this last line is not needed
                self.compute_shortest_path(s_start=s_start)
            yield s_start, cells_with_new_cost

        print("goal found!")
Example #9
0
class Animation:
    def __init__(self,
                 title="D* Lite Path Planning",
                 width=10,
                 height=10,
                 margin=0,
                 x_dim=100,
                 y_dim=50,
                 start=(0, 0),
                 goal=(50, 50),
                 viewing_range=3):

        self.width = width
        self.height = height
        self.margin = margin
        self.x_dim = x_dim
        self.y_dim = y_dim
        self.start = start
        self.current = start
        self.observation = {"pos": None, "type": None}
        self.goal = goal
        self.viewing_range = viewing_range

        pygame.init()

        # Set the 'width' and 'height' of the screen
        window_size = [(width + margin) * y_dim + margin,
                       (height + margin) * x_dim + margin]

        self.screen = pygame.display.set_mode(window_size)

        # create occupancy grid map
        """
        set initial values for the map occupancy grid
        |----------> y, column
        |           (x=0,y=2)
        |
        V (x=2, y=0)
        x, row
        """
        self.world = OccupancyGridMap(x_dim=x_dim,
                                      y_dim=y_dim,
                                      exploration_setting='8N')

        # Set title of screen
        pygame.display.set_caption(title)

        # set font
        pygame.font.SysFont('Comic Sans MS', 36)

        # Loop until the user clicks the close button
        self.done = False

        # used to manage how fast the screen updates
        self.clock = pygame.time.Clock()

    def get_position(self):
        return self.current

    def set_position(self, pos: (int, int)):
        self.current = pos

    def get_goal(self):
        return self.goal

    def set_goal(self, goal: (int, int)):
        self.goal = goal

    def set_start(self, start: (int, int)):
        self.start = start

    def display_path(self, path=None):
        if path is not None:
            for step in path:
                # draw a moving robot, based on current coordinates
                step_center = [
                    round(step[1] *
                          (self.width + self.margin) + self.width / 2) +
                    self.margin,
                    round(step[0] *
                          (self.height + self.margin) + self.height / 2) +
                    self.margin
                ]

                # draw robot position as red circle
                pygame.draw.circle(self.screen, START, step_center,
                                   round(self.width / 2) - 2)

    def display_obs(self, observations=None):
        if observations is not None:
            for o in observations:
                pygame.draw.rect(
                    self.screen, GRAY1,
                    [(self.margin + self.width) * o[1] + self.margin,
                     (self.margin + self.height) * o[0] + self.margin,
                     self.width, self.height])

    def run_game(self, path=None):
        if path is None:
            path = []

        grid_cell = None
        self.cont = False
        for event in pygame.event.get():

            if event.type == pygame.QUIT:  # if user clicked close
                print("quit")
                self.done = True  # flag that we are done so we can exit loop

            elif (event.type == pygame.KEYDOWN
                  and event.key == pygame.K_SPACE) or self.cont:
                # space bar pressed. call next action
                if path:
                    (x, y) = path[1]
                    self.set_position((x, y))

            elif event.type == pygame.KEYDOWN and event.key == pygame.K_BACKSPACE:
                print("backspace automates the press space")
                if not self.cont:
                    self.cont = True
                else:
                    self.cont = False

            # set obstacle by holding left-click
            elif pygame.mouse.get_pressed()[0]:
                # User clicks the mouse. Get the position
                (col, row) = pygame.mouse.get_pos()

                # change the x/y screen coordinates to grid coordinates
                x = row // (self.height + self.margin)
                y = col // (self.width + self.margin)

                # turn pos into cell
                grid_cell = (x, y)

                # set the location in the grid map
                if self.world.is_unoccupied(grid_cell):
                    self.world.set_obstacle(grid_cell)
                    self.observation = {"pos": grid_cell, "type": OBSTACLE}

            # remove obstacle by holding right-click
            elif pygame.mouse.get_pressed()[2]:
                # User clicks the mouse. Get the position
                (col, row) = pygame.mouse.get_pos()

                # change the x/y screen coordinates to grid coordinates
                x = row // (self.height + self.margin)
                y = col // (self.width + self.margin)

                # turn pos into cell
                grid_cell = (x, y)

                # set the location in the grid map
                if not self.world.is_unoccupied(grid_cell):
                    print("grid cell: ".format(grid_cell))
                    self.world.remove_obstacle(grid_cell)
                    self.observation = {"pos": grid_cell, "type": UNOCCUPIED}

        # set the screen background
        self.screen.fill(BLACK)

        # draw the grid
        for row in range(self.x_dim):
            for column in range(self.y_dim):
                # color the cells
                pygame.draw.rect(
                    self.screen,
                    colors[self.world.occupancy_grid_map[row][column]],
                    [(self.margin + self.width) * column + self.margin,
                     (self.margin + self.height) * row + self.margin,
                     self.width, self.height])

        self.display_path(path=path)
        # fill in the goal cell with green
        pygame.draw.rect(
            self.screen, GOAL,
            [(self.margin + self.width) * self.goal[1] + self.margin,
             (self.margin + self.height) * self.goal[0] + self.margin,
             self.width, self.height])

        # draw a moving robot, based on current coordinates
        robot_center = [
            round(self.current[1] *
                  (self.width + self.margin) + self.width / 2) + self.margin,
            round(self.current[0] *
                  (self.height + self.margin) + self.height / 2) + self.margin
        ]

        # draw robot position as red circle
        pygame.draw.circle(self.screen, START, robot_center,
                           round(self.width / 2) - 2)

        # draw robot local grid map (viewing range)
        pygame.draw.rect(self.screen, LOCAL_GRID, [
            robot_center[0] - self.viewing_range *
            (self.height + self.margin), robot_center[1] - self.viewing_range *
            (self.width + self.margin), 2 * self.viewing_range *
            (self.height + self.margin), 2 * self.viewing_range *
            (self.width + self.margin)
        ], 2)

        # set game tick
        self.clock.tick(20)

        # go ahead and update screen with that we've drawn
        pygame.display.flip()

    # be 'idle' friendly. If you forget this, the program will hang on exit
    pygame.quit()
Example #10
0
class DStarLite:
    def __init__(self, map: OccupancyGridMap, s_start: (int, int),
                 s_goal: (int, int)):
        self.new_edges_and_old_costs = None

        self.s_start = s_start
        self.s_goal = s_goal
        self.s_last = s_start
        self.k_m = 0
        self.U = PriorityQueue()
        self.rhs = np.ones((map.x_dim, map.y_dim)) * np.inf
        self.g = self.rhs.copy()

        self.sensed_map = OccupancyGridMap(x_dim=map.x_dim,
                                           y_dim=map.y_dim,
                                           exploration_setting='8N')

        self.rhs[self.s_goal] = 0
        self.U.insert(self.s_goal,
                      Priority(heuristic(self.s_start, self.s_goal), 0))

    def calculate_key(self, s: (int, int)):
        k1 = min(self.g[s], self.rhs[s]) + heuristic(self.s_start,
                                                     s) + self.k_m
        k2 = min(self.g[s], self.rhs[s])
        return Priority(k1, k2)

    def c(self, u: (int, int), v: (int, int)) -> float:
        if not self.sensed_map.is_unoccupied(
                u) or not self.sensed_map.is_unoccupied(v):
            return float('inf')
        else:
            return heuristic(u, v)

    def contain(self, u: (int, int)) -> (int, int):
        return u in self.U.vertices_in_heap

    def update_vertex(self, u: (int, int)):
        if self.g[u] != self.rhs[u] and self.contain(u):
            self.U.update(u, self.calculate_key(u))
        elif self.g[u] != self.rhs[u] and not self.contain(u):
            self.U.insert(u, self.calculate_key(u))
        elif self.g[u] == self.rhs[u] and self.contain(u):
            self.U.remove(u)

    def compute_shortest_path(self):
        while self.U.top_key() < self.calculate_key(
                self.s_start) or self.rhs[self.s_start] > self.g[self.s_start]:
            u = self.U.top()
            k_old = self.U.top_key()
            k_new = self.calculate_key(u)

            if k_old < k_new:
                self.U.update(u, k_new)
            elif self.g[u] > self.rhs[u]:
                self.g[u] = self.rhs[u]
                self.U.remove(u)
                pred = self.sensed_map.succ(vertex=u)
                for s in pred:
                    if s != self.s_goal:
                        self.rhs[s] = min(self.rhs[s],
                                          self.c(s, u) + self.g[u])
                    self.update_vertex(s)
            else:
                self.g_old = self.g[u]
                self.g[u] = float('inf')
                pred = self.sensed_map.succ(vertex=u)
                pred.append(u)
                for s in pred:
                    if self.rhs[s] == self.c(s, u) + self.g_old:
                        if s != self.s_goal:
                            min_s = float('inf')
                            succ = self.sensed_map.succ(vertex=s)
                            for s_ in succ:
                                temp = self.c(s, s_) + self.g[s_]
                                if min_s > temp:
                                    min_s = temp
                            self.rhs[s] = min_s
                    self.update_vertex(u)

    def rescan(self) -> Vertices:

        new_edges_and_old_costs = self.new_edges_and_old_costs
        self.new_edges_and_old_costs = None
        return new_edges_and_old_costs

    def move_and_replan(self, robot_position: (int, int)):
        path = [robot_position]
        self.s_start = robot_position
        self.s_last = self.s_start
        self.compute_shortest_path()

        while self.s_start != self.s_goal:
            assert (self.rhs[self.s_start] !=
                    float('inf')), "There is no known path!"

            succ = self.sensed_map.succ(self.s_start, avoid_obstacles=False)
            min_s = float('inf')
            arg_min = None
            for s_ in succ:
                temp = self.c(self.s_start, s_) + self.g[s_]
                if temp < min_s:
                    min_s = temp
                    arg_min = s_

            self.s_start = arg_min
            path.append(self.s_start)
            changed_edges_with_old_cost = self.rescan()
            if changed_edges_with_old_cost:
                self.k_m += heuristic(self.s_last, self.s_start)
                self.s_last = self.s_start

                vertices = changed_edges_with_old_cost.vertices
                for vertex in vertices:
                    v = vertex.pos
                    succ_v = vertex.edges_and_c_old
                    for u, c_old in succ_v.items():
                        c_new = self.c(u, v)
                        if c_old > c_new:
                            if u != self.s_goal:
                                self.rhs[u] = min(self.rhs[u],
                                                  self.c(u, v) + self.g[v])
                        elif self.rhs[u] == c_old + self.g[v]:
                            if u != self.s_goal:
                                min_s = float('inf')
                                succ_u = self.sensed_map.succ(vertex=u)
                                for s_ in succ_u:
                                    temp = self.c(u, s_) + self.g[s_]
                                    if min_s > temp:
                                        min_s = temp
                                self.rhs[u] = min_s
                            self.update_vertex(u)
            self.compute_shortest_path()
        print("path found!")
        return path, self.g, self.rhs