def base_visualization(grid_losses, w0_list, w1_list, mean_x, std_x, height, weight): """Base Visualization for both models.""" w0, w1 = np.meshgrid(w0_list, w1_list) fig = plt.figure() # plot contourf ax1 = fig.add_subplot(1, 2, 1) cp = ax1.contourf(w0, w1, grid_losses.T, cmap=plt.cm.jet) fig.colorbar(cp, ax=ax1) ax1.set_xlabel(r'$w_0$') ax1.set_ylabel(r'$w_1$') # put a marker at the minimum loss_star, w0_star, w1_star = get_best_parameters(w0_list, w1_list, grid_losses) ax1.plot(w0_star, w1_star, marker='*', color='r', markersize=20) # plot f(x) ax2 = fig.add_subplot(1, 2, 2) ax2.scatter(height, weight, marker=".", color='b', s=5) ax2.set_xlabel("x") ax2.set_ylabel("y") ax2.grid() return fig
def base_visualization(grid_losses, w0_list, w1_list, mean_x, std_x, height, weight): """Base Visualization for both models.""" w0, w1 = np.meshgrid(w0_list, w1_list) fig = plt.figure() # plot contourf ax1 = fig.add_subplot(1, 2, 1) cp = ax1.contourf(w0, w1, grid_losses.T, cmap=plt.cm.jet) fig.colorbar(cp, ax=ax1) ax1.set_xlabel(r'$w_0$') ax1.set_ylabel(r'$w_1$') # put a marker at the minimum loss_star, w0_star, w1_star = get_best_parameters( w0_list, w1_list, grid_losses) ax1.plot(w0_star, w1_star, marker='*', color='r', markersize=20) # plot f(x) ax2 = fig.add_subplot(1, 2, 2) ax2.scatter(height, weight, marker=".", color='b', s=5) ax2.set_xlabel("x") ax2.set_ylabel("y") ax2.grid() return fig
def grid_visualization(grid_losses, w0_list, w1_list, mean_x, std_x, height, weight): """Visualize how the trained model looks like under the grid search.""" fig = base_visualization(grid_losses, w0_list, w1_list, mean_x, std_x, height, weight) loss_star, w0_star, w1_star = get_best_parameters(w0_list, w1_list, grid_losses) # plot prediciton x, f = prediction(w0_star, w1_star, mean_x, std_x) ax2 = fig.get_axes()[2] ax2.plot(x, f, 'r') return fig
def grid_visualization(grid_losses, w0_list, w1_list, mean_x, std_x, height, weight): """Visualize how the trained model looks like under the grid search.""" fig = base_visualization( grid_losses, w0_list, w1_list, mean_x, std_x, height, weight) loss_star, w0_star, w1_star = get_best_parameters( w0_list, w1_list, grid_losses) # plot prediciton x, f = prediction(w0_star, w1_star, mean_x, std_x) ax2 = fig.get_axes()[2] ax2.plot(x, f, 'r') return fig