def __init__(self, dataset, dry_depth=0.0): """ initilize a Mudflats object :param dataset: a dataset with a depth Variable :type dataset: gridded.Dataset :param dry_depth=0.0: depth below which a tidal flat is considered dry :type dry_depth: float """ if isinstance(dataset, gridded.Dataset): self.dataset = dataset else: self.dataset = gridded.Dataset(dataset) self.dry_depth = dry_depth try: self.depth = self.dataset.variables['depth'] except KeyError: raise ValueError('Dataset must have a "depth" variable')
def __init__(self, dataset, dry_vel_u=-9999.0, grid_topology=None): """ initilize a Mudflats object for Matroos Files :param dataset: a dataset with a VELU Variable :type dataset: gridded.Dataset :param dry_vel_u=-9999.0: vel_u == -9999.0 which is masked/undefined meaning a tidal flat is considered dry :type dry_vel_u: float """ # check if given dataset is instance of gridded.Dataset if isinstance(dataset, gridded.Dataset): self.dataset = dataset # add grid_topology for rgrid else: self.dataset = gridded.Dataset(dataset, grid_topology=grid_topology) self.dry_vel_u = dry_vel_u try: self.vel_u = self.dataset.variables['VELU'] except KeyError: raise ValueError('Dataset must have a "VELU" variable')
def test_no_depth(): ds = gridded.Dataset() ds.variables = {} # just so there is something with pytest.raises(ValueError): tf = Delft3D_Mudflats(ds)
def dataset(): ds = gridded.Dataset(infile) return ds
units="meters", data=depth, data_file=nc, grid_file=nc, fill_value=0, location='nodes', attributes=None, ) # global attributes attrs = {key: nc.getncattr(key) for key in nc.ncattrs()} # now make a dataset out of it all: ds = gridded.Dataset(ncfile=None, grid=grid, variables={'Depth': depth_var}, attributes=attrs ) ## now learn a bit about it: # What is its grid type? print("The dataset Grid is:", type(ds.grid)) print("It has these variables:", list(ds.variables.keys())) print('You can access the variable with indexing: ds["Depth"]') Depth = ds["Depth"] print(Depth)
"""checking a not-properly compliant dataset""" from datetime import datetime import gridded filename = "../PACE_GNOME_01V2.nc" # filename = "../PACE_GNOME_01V2_fixed.nc" # grid_topology = {"node_lat": "latc", # "node_lon": "lonc", # "center_lon": "lon", # "center_lat": "lat", # } ds = gridded.Dataset("../PACE_GNOME_01V2.nc", # grid_topology=grid_topology ) print ds depth = ds.variables['depth'] print depth print depth.grid # see if we can interpolate points = ((5.2, 53.3), (5.3, 53.3), (5.2, 53.25)) # should be middle of the timespan in the file time = datetime(2009, 1, 15)
SELFE= 'http://comt.sura.org/thredds/dodsC/data/comt_1_archive/inundation_tropical/VIMS_SELFE/Hurricane_Rita_2D_final_run_without_waves' ) bbox = [-95, -85, 27, 32] # Set the bounding box. variable = 'sea_surface_height_above_geoid' # CF standard_name (or long_name, if no standard_name). contour_levels = np.arange(-1, 5.0, 0.2) # Set the contour levels. start_time = datetime(2005, 9, 24, 5, 0, 0) # UTC time # ## Read the data # # In[3]: # load up a gridded.dataset of the ADCIRC model: ds = gridded.Dataset(models['SELFE']) # ### Get some information about this dataset # In[4]: # Information about the grid: print(ds.grid.info) # In[5]: # what variables are there" print("Variables available and their standard names:\n") for name, var in ds.variables.items(): try: print(name, ":", var.attributes['standard_name'])