Example #1
0
def min_connected_k_forcing_set(G, k):
    """Return a smallest connected k-forcing set in *G*.

    The method used to compute the set is brute force.

    Parameters
    ----------
    G : NetworkX graph
        An undirected graph.

    k : int
        A positive integer

    Returns
    -------
    list
        A list of nodes in a smallest connected k-forcing set in *G*.
    """
    # check that k is a positive integer
    if not float(k).is_integer():
        raise TypeError("Expected k to be an integer.")
    k = int(k)
    if k < 1:
        raise ValueError("Expected k to be a positive integer.")
    # only start search if graph is connected
    if not is_connected(G):
        return None
    for i in range(1, G.order() + 1):
        for S in combinations(G.nodes(), i):
            if is_connected_k_forcing_set(G, S, k):
                return list(S)
Example #2
0
def is_connected_k_forcing_set(G, nodes, k):
    """Return whether or not the nodes in `nodes` comprise a connected k-forcing
    set in *G*.

    A *connected k-forcing set* in a graph *G* is a k-forcing set that induces
    a connected subgraph.

    Parameters
    ----------
    G : NetworkX graph
        An undirected graph.

    nodes : list, set
        An iterable container of nodes in G.

    k : int
        A positive integer.

    Returns
    -------
    boolean
        True if the nodes in nbunch comprise a connected k-forcing set in *G*.
        False otherwise.
    """
    # check that k is a positive integer
    if not float(k).is_integer():
        raise TypeError("Expected k to be an integer.")
    k = int(k)
    if k < 1:
        raise ValueError("Expected k to be a positive integer.")
    S = set(n for n in nodes if n in G)
    H = G.subgraph(S)
    return is_connected(H) and is_k_forcing_set(G, S, k)
Example #3
0
def is_connected_k_dominating_set(G, nodes, k):
    """Return whether or not *nodes* is a connected *k*-dominating set of *G*.

    A set *D* is a *connected k-dominating set* of *G* is *D* is a
    *k*-dominating set in *G* and the subgraph of *G* induced by *D* is
    a connected graph.

    Parameters
    ----------
    G : NetworkX graph
        An undirected graph.

    nodes : list, set
        An iterable container of nodes in G.

    k : int
        A positive integer

    Returns
    -------
    boolean
        True if *nbunch* is a connected *k*-dominating set in *G*, and false
        otherwise.

    """
    # check that k is a positive integer
    if not float(k).is_integer():
        raise TypeError("Expected k to be an integer.")
    k = int(k)
    if k < 1:
        raise ValueError("Expected k to be a positive integer.")
    S = set(n for n in nodes if n in G)
    H = G.subgraph(S)
    return is_connected(H) and is_k_dominating_set(G, S, k)
Example #4
0
def min_connected_k_dominating_set(G, k):
    """Return a smallest connected k-dominating set in the graph.

    The method to compute the set is brute force.

    Parameters
    ----------
    G : NetworkX graph
        An undirected graph.

    k : int
        A positive integer.

    Returns
    -------
    list
        A list of nodes in a smallest k-dominating set in the graph.

    """
    # check that k is a positive integer
    if not float(k).is_integer():
        raise TypeError("Expected k to be an integer.")
    k = int(k)
    if k < 1:
        raise ValueError("Expected k to be a positive integer.")
    # Only proceed with search if graph is connected
    if not is_connected(G):
        return []
    for i in range(1, number_of_nodes(G) + 1):
        for S in combinations(nodes(G), i):
            if is_connected_k_dominating_set(G, S, k):
                return list(S)
Example #5
0
def chromatic_number_ram_rama(G):
    """Return the chromatic number of G.

    The *chromatic number* of a graph G is the size of a mininum coloring of
    the nodes in G such that no two adjacent nodes have the same color.

    The method for computing the chromatic number is an implementation of the
    algorithm discovered by Ram and Rama.

    Parameters
    ----------
    G : NetworkX graph
        An undirected graph.

    Returns
    -------
    int
        The chromatic number of G.

    References
    ----------
    A.M. Ram, R. Rama, An alternate method to find the chromatic number of a
    finite, connected graph, *arXiv preprint
    arXiv:1309.3642*, (2013)

    """
    if not is_connected(G):
        raise TypeError("Invalid graph: not connected")

    if is_complete_graph(G):
        return G.order()

    # get list of pairs of non neighbors in G
    N = [
        list(p) for p in pairs_of_nodes(G) if not are_neighbors(G, p[0], p[1])
    ]

    # get a pair of non neighbors who have the most common neighbors
    num_common_neighbors = list(map(lambda p: len(common_neighbors(G, p)), N))
    P = N[np.argmax(num_common_neighbors)]

    # Collapse the nodes in P and repeat the above process
    H = G.copy()
    contract_nodes(H, P)
    return chromatic_number(H)