def test_radial_transform(center, images, expected):
    radial = RadialFiltration(center=center)

    print(radial.fit_transform(images))

    assert_almost_equal(radial.fit_transform(images), expected)
def test_radial_not_fitted():
    radial = RadialFiltration()
    with pytest.raises(NotFittedError):
        radial.transform(images_2D)
def test_radial_errors():
    center = 'a'
    radial = RadialFiltration(center=center)
    with pytest.raises(TypeError):
        radial.fit(images_2D)
Example #4
0
def test_radial_fit_transform_plot():
    RadialFiltration().fit_transform_plot(images_2D, sample=0)
Example #5
0
                         options=('0', '1', '2', '3', '4', '5', '6', '7', '8',
                                  '9', '10'))))[0]

im = X_train[im_idx][None, :, :]

binarizer = Binarizer(threshold=0.4)

im_binarized = binarizer.fit_transform(im)

binplot = binarizer.plot(im_binarized)

binplot.update_layout(template='plotly_dark')

# Radial Filtration

radial_filtration = RadialFiltration(center=np.array([20, 6]))

im_filtration = radial_filtration.fit_transform(im_binarized)

radplot = radial_filtration.plot(im_filtration, colorscale="jet")

radplot.update_layout(template='plotly_dark')

# PLOTS

st.subheader("")
st.write(binplot)
st.subheader("Figure 1. Binarized Plot")
st.subheader("")

st.subheader("")
Example #6
0
X[X <= .4] = 0
X[X > .4] = 1
X = X.reshape((40000, 28, 28))

X_bin = X

# X_index = np.zeros((40000, 28, 28))
# for i in tqdm(range(40000)):
#     img = X[i]
#     x_arr, y_arr = np.nonzero(img)
#     X_index[i] = np.array([x_arr, y_arr]).T

hf = HeightFiltration()
df = DilationFiltration()
rf = RadialFiltration(np.array([8, 15]))
X_used = X_bin
y_used = y

## Create the Filtrations
X_hf = hf.fit_transform(X_used, y_used)
X_df = df.fit_transform(X_used, y_used)
X_rf = rf.fit_transform(X_used, y_used)

fig = plt.figure()
fig.set_size_inches((12, 9))
a = fig.add_subplot(2, 2, 1)
a.set_title("Height filtration")
imgplot = plt.imshow(X_hf[4], cmap="viridis")
a = fig.add_subplot(2,2, 2)
a.set_title("Dilation filtration")
Example #7
0
pio.renderers.default = 'plotly_mimetype'

images_2D = np.stack([np.ones((3, 4)),
                      np.concatenate([np.ones((3, 2)), np.zeros((3, 2))],
                                     axis=1),
                      np.zeros((3, 4))], axis=0)

images_3D = np.stack([np.ones((3, 4, 2)),
                      np.concatenate([np.ones((3, 2, 2)),
                                      np.zeros((3, 2, 2))], axis=1),
                      np.zeros((3, 4, 2))], axis=0)


@pytest.mark.parametrize("transformer",
                         [HeightFiltration(), RadialFiltration(),
                          DilationFiltration(), ErosionFiltration(),
                          SignedDistanceFiltration(), DensityFiltration()])
def test_invalid_input_shape(transformer):
    X = np.ones((1, 1, 1, 1, 1))
    with pytest.raises(ValueError, match="Input of `fit`"):
        transformer.fit(X)


def test_height_not_fitted():
    height = HeightFiltration()
    with pytest.raises(NotFittedError):
        height.transform(images_2D)


def test_height_errors():