Example #1
0
 def test_walk_duration(self):
     node_profile = NodeProfileSimple(walk_to_target_duration=27)
     self.assertEqual(27, node_profile.get_walk_to_target_duration())
     pt1 = LabelTimeSimple(departure_time=5, arrival_time_target=35)
     self.assertFalse(node_profile.update_pareto_optimal_tuples(pt1))
     pt2 = LabelTimeSimple(departure_time=10, arrival_time_target=35)
     self.assertTrue(node_profile.update_pareto_optimal_tuples(pt2))
Example #2
0
 def test_pareto_optimality2(self):
     node_profile = NodeProfileSimple()
     pt2 = LabelTimeSimple(departure_time=10, arrival_time_target=35)
     self.assertTrue(node_profile.update_pareto_optimal_tuples(pt2))
     pt1 = LabelTimeSimple(departure_time=5, arrival_time_target=35)
     self.assertFalse(node_profile.update_pareto_optimal_tuples(pt1))
     self.assertEquals(len(node_profile.get_final_optimal_labels()), 1)
Example #3
0
 def test_trip_duration_statistics_simple(self):
     pairs = [
         LabelTimeSimple(1.0, 2.0),
         LabelTimeSimple(2.0, 4.0),
         LabelTimeSimple(4.0, 5.0)
     ]
     profile = NodeProfileSimple()
     for pair in pairs:
         profile.update_pareto_optimal_tuples(pair)
     analyzer = NodeProfileAnalyzerTime.from_profile(profile, 0, 100)
     self.assertAlmostEqual(2, analyzer.max_trip_duration())
     self.assertAlmostEqual(1, analyzer.min_trip_duration())
     self.assertAlmostEqual(4 / 3.0, analyzer.mean_trip_duration())
     self.assertAlmostEqual(1, analyzer.median_trip_duration())
Example #4
0
    def test_earliest_arrival_time(self):
        node_profile = NodeProfileSimple()
        self.assertEquals(
            float("inf"),
            node_profile.evaluate_earliest_arrival_time_at_target(0, 0))

        node_profile.update_pareto_optimal_tuples(
            LabelTimeSimple(departure_time=1, arrival_time_target=1))
        self.assertEquals(
            1, node_profile.evaluate_earliest_arrival_time_at_target(0, 0))

        node_profile.update_pareto_optimal_tuples(
            LabelTimeSimple(departure_time=3, arrival_time_target=4))
        self.assertEquals(
            4, node_profile.evaluate_earliest_arrival_time_at_target(2, 0))
Example #5
0
 def test_temporal_distance_statistics_with_walk(self):
     pt1 = LabelTimeSimple(departure_time=1, arrival_time_target=2)
     pt2 = LabelTimeSimple(
         departure_time=4,
         arrival_time_target=5)  # not taken into account by the analyzer
     profile = NodeProfileSimple(1.5)
     assert isinstance(pt1, LabelTimeSimple), type(pt1)
     profile.update_pareto_optimal_tuples(pt1)
     profile.update_pareto_optimal_tuples(pt2)
     analyzer = NodeProfileAnalyzerTime.from_profile(profile, 0, 3)
     self.assertAlmostEqual(
         1.5, analyzer.max_temporal_distance())  # 1 -wait-> 2 -travel->4
     self.assertAlmostEqual(1, analyzer.min_temporal_distance())
     self.assertAlmostEqual((2.5 * 1.5 + 0.5 * 1.25) / 3.,
                            analyzer.mean_temporal_distance())
     self.assertAlmostEqual(1.5, analyzer.median_temporal_distance())
    def test_last_leg_is_walk(self):
        event_list_raw_data = [(0, 1, 0, 10, "trip_1", 1)]
        transit_connections = list(
            map(lambda el: Connection(*el), event_list_raw_data))
        walk_network = networkx.Graph()
        walk_network.add_edge(1, 2, d_walk=20)

        walk_speed = 1
        source_stop = 0
        target_stop = 2
        transfer_margin = 0
        start_time = 0
        end_time = 50
        pareto_tuples = list()
        pareto_tuples.append(
            LabelTimeSimple(departure_time=0, arrival_time_target=30))

        csa_profile = ConnectionScanProfiler(transit_connections, target_stop,
                                             start_time, end_time,
                                             transfer_margin, walk_network,
                                             walk_speed)
        csa_profile.run()
        found_tuples = csa_profile.stop_profiles[
            source_stop].get_final_optimal_labels()
        self._assert_pareto_labels_equal(found_tuples, pareto_tuples)
    def test_simple(self):
        event_list_raw_data = [
            (2, 4, 40, 50, "trip_5", 1),
        ]
        transit_connections = list(
            map(lambda el: Connection(*el), event_list_raw_data))
        walk_network = networkx.Graph()
        walk_network.add_edge(1, 2, d_walk=20)
        walk_network.add_edge(3, 4, d_walk=15)
        walk_speed = 1
        source_stop = 1
        target_stop = 4
        transfer_margin = 0
        start_time = 0
        end_time = 50

        pareto_tuples = list()
        pareto_tuples.append(
            LabelTimeSimple(departure_time=20, arrival_time_target=50))

        csa_profile = ConnectionScanProfiler(transit_connections, target_stop,
                                             start_time, end_time,
                                             transfer_margin, walk_network,
                                             walk_speed)
        csa_profile.run()
        source_stop_profile = csa_profile.stop_profiles[source_stop]
        source_stop_pareto_tuples = source_stop_profile.get_final_optimal_labels(
        )

        self._assert_pareto_labels_equal(pareto_tuples,
                                         source_stop_pareto_tuples)
Example #8
0
    def get_time_profile_analyzer(self, max_n_boardings=None):
        """
        Parameters
        ----------
        max_n_boardings: int
            The maximum number of boardings allowed for the labels used to construct the "temporal distance profile"

        Returns
        -------
        analyzer: NodeProfileAnalyzerTime
        """
        if max_n_boardings is None:
            max_n_boardings = self.max_trip_n_boardings()
        # compute only if not yet computed
        if not max_n_boardings in self._n_boardings_to_simple_time_analyzers:
            if max_n_boardings == 0:
                valids = []
            else:
                candidate_labels = [
                    LabelTimeSimple(label.departure_time,
                                    label.arrival_time_target)
                    for label in self._node_profile_final_labels
                    if ((self.start_time_dep <= label.departure_time)
                        and label.n_boardings <= max_n_boardings)
                ]
                valids = compute_pareto_front(candidate_labels)
            valids.sort(key=lambda label: -label.departure_time)
            profile = NodeProfileSimple(self._walk_to_target_duration)
            for valid in valids:
                profile.update_pareto_optimal_tuples(valid)
            npat = NodeProfileAnalyzerTime.from_profile(
                profile, self.start_time_dep, self.end_time_dep)
            self._n_boardings_to_simple_time_analyzers[max_n_boardings] = npat
        return self._n_boardings_to_simple_time_analyzers[max_n_boardings]
Example #9
0
    def test_temporal_distance_statistics(self):
        pairs = [
            LabelTimeSimple(1, 2),
            LabelTimeSimple(2, 4),
            LabelTimeSimple(4, 5)
        ]
        profile = NodeProfileSimple()
        for pair in pairs:
            profile.update_pareto_optimal_tuples(pair)

        analyzer = NodeProfileAnalyzerTime.from_profile(profile, 0, 3)
        self.assertAlmostEqual(
            4 - 1, analyzer.max_temporal_distance())  # 1 -wait-> 2 -travel->4
        self.assertAlmostEqual(1, analyzer.min_temporal_distance())
        self.assertAlmostEqual((1.5 * 1 + 2.5 * 1 + 2.5 * 1) / 3.,
                               analyzer.mean_temporal_distance())
        self.assertAlmostEqual(2.25, analyzer.median_temporal_distance())
Example #10
0
 def test_identity_profile(self):
     identity_profile = NodeProfileSimple(0)
     self.assertFalse(
         identity_profile.update_pareto_optimal_tuples(
             LabelTimeSimple(10, 10)))
     self.assertEqual(
         10,
         identity_profile.evaluate_earliest_arrival_time_at_target(10, 0))
def plot_plain_profile():
    profile = NodeProfileSimple(walk_to_target_duration=10 * 60)
    for label in labels_t_dep_dur_b:
        profile.update_pareto_optimal_tuples(
            LabelTimeSimple(departure_time=label[0] * 60,
                            arrival_time_target=(label[0] + label[1]) * 60))

    analyzer = NodeProfileAnalyzerTime(profile, 0 * 60, 20 * 60)
    fig = plt.figure(figsize=(5.5, 3.5))

    ax1 = plt.subplot(gs[:, :4])
    analyzer.plot_temporal_distance_profile(format_string="%M",
                                            plot_journeys=True,
                                            lw=3,
                                            ax=ax1,
                                            plot_tdist_stats=True,
                                            alpha=0.15,
                                            plot_trip_stats=False,
                                            duration_divider=60.0)

    ax2 = plt.subplot(gs[:, 4:])
    # ax2 = plt.subplot2grid(subplot_grid, (0, 4), colspan=2, rowspan=1)
    fig = analyzer.plot_temporal_distance_pdf_horizontal(use_minutes=True,
                                                         ax=ax2,
                                                         legend_font_size=9)

    ax2.set_ylabel("")
    ax2.set_yticks([])

    ax1.set_ylim(0, 11.5)
    ax2.set_ylim(0, 11.5)
    ax2.set_xlim(0, 0.3)
    ax2.set_yticklabels(["" for _ in ax2.get_yticks()])
    ax2.set_xticks([0.1, 0.2, 0.3])

    ax1.set_xlabel("Departure time $t_{\\text{dep}}$ (min)")
    ax1.set_ylabel("Temporal distance $\\tau$ (min)")

    handles, labels = ax1.get_legend_handles_labels()

    ax1.legend(handles,
               labels,
               loc="best",
               fancybox=True,
               ncol=2,
               shadow=False,
               prop={'size': 9})
    for _ax, letter in zip([ax1, ax2], "AB"):
        _ax.text(0.04,
                 0.98,
                 "\\textbf{" + letter + "}",
                 horizontalalignment="left",
                 verticalalignment="top",
                 transform=_ax.transAxes,
                 fontsize=15,
                 color="black")
    fig.savefig(settings.FIGS_DIRECTORY + "schematic_temporal_distance.pdf")
Example #12
0
    def test_pareto_optimality(self):
        node_profile = NodeProfileSimple()

        pair1 = LabelTimeSimple(departure_time=1, arrival_time_target=2)
        self.assertTrue(node_profile.update_pareto_optimal_tuples(pair1))

        pair2 = LabelTimeSimple(departure_time=2, arrival_time_target=3)
        self.assertTrue(node_profile.update_pareto_optimal_tuples(pair2))

        self.assertEquals(2, len(node_profile._labels))

        pair3 = LabelTimeSimple(departure_time=1, arrival_time_target=1)
        self.assertTrue(node_profile.update_pareto_optimal_tuples(pair3))
        self.assertEquals(2,
                          len(node_profile._labels),
                          msg=str(node_profile.get_final_optimal_labels()))

        pair4 = LabelTimeSimple(departure_time=1, arrival_time_target=2)
        self.assertFalse(node_profile.update_pareto_optimal_tuples(pair4))
 def _scan_footpaths_to_departure_stop(self, connection_dep_stop,
                                       connection_dep_time,
                                       arrival_time_target):
     """ A helper method for scanning the footpaths. Updates self._stop_profiles accordingly"""
     for _, neighbor, data in self._walk_network.edges_iter(
             nbunch=[connection_dep_stop], data=True):
         d_walk = data['d_walk']
         neighbor_dep_time = connection_dep_time - d_walk / self._walk_speed
         pt = LabelTimeSimple(departure_time=neighbor_dep_time,
                              arrival_time_target=arrival_time_target)
         self._stop_profiles[neighbor].update_pareto_optimal_tuples(pt)
    def _run(self):
        # if source node in s1:
        previous_departure_time = float("inf")
        connections = self._connections  # list[Connection]
        n_connections = len(connections)
        for i, connection in enumerate(connections):
            # basic checking + printing progress:
            if self._verbose and i % 1000 == 0:
                print(i, "/", n_connections)
            assert (isinstance(connection, Connection))
            assert (connection.departure_time <= previous_departure_time)
            previous_departure_time = connection.departure_time

            # get all different "accessible" / arrival times (Pareto-optimal sets)
            arrival_profile = self._stop_profiles[
                connection.arrival_stop]  # NodeProfileSimple

            # Three possibilities:

            # 1. earliest arrival time (Profiles) via transfer
            earliest_arrival_time_via_transfer = arrival_profile.evaluate_earliest_arrival_time_at_target(
                connection.arrival_time, self._transfer_margin)

            # 2. earliest arrival time within same trip (equals float('inf') if not reachable)
            earliest_arrival_time_via_same_trip = self.__trip_min_arrival_time[
                connection.trip_id]

            # then, take the minimum (or the Pareto-optimal set) of these three alternatives.
            min_arrival_time = min(earliest_arrival_time_via_same_trip,
                                   earliest_arrival_time_via_transfer)

            # If there are no 'labels' to progress, nothing needs to be done.
            if min_arrival_time == float("inf"):
                continue

            # Update information for the trip
            if earliest_arrival_time_via_same_trip > min_arrival_time:
                self.__trip_min_arrival_time[
                    connection.trip_id] = earliest_arrival_time_via_transfer

            # Compute the new "best" pareto_tuple possible (later: merge the sets of pareto-optimal labels)
            pareto_tuple = LabelTimeSimple(connection.departure_time,
                                           min_arrival_time)

            # update departure stop profile (later: with the sets of pareto-optimal labels)
            dep_stop_profile = self._stop_profiles[connection.departure_stop]
            updated_dep_stop = dep_stop_profile.update_pareto_optimal_tuples(
                pareto_tuple)
            # if the departure stop is updated, one also needs to scan the footpaths from the departure stop
            if updated_dep_stop:
                self._scan_footpaths_to_departure_stop(
                    connection.departure_stop, connection.departure_time,
                    min_arrival_time)
    def test_basics(self):
        csa_profile = ConnectionScanProfiler(self.transit_connections,
                                             self.target_stop, self.start_time,
                                             self.end_time,
                                             self.transfer_margin,
                                             self.walk_network,
                                             self.walk_speed)
        csa_profile.run()

        stop_3_pareto_tuples = csa_profile.stop_profiles[
            3].get_final_optimal_labels()
        self.assertEqual(len(stop_3_pareto_tuples), 1)
        self.assertIn(LabelTimeSimple(32, 35), stop_3_pareto_tuples)

        stop_2_pareto_tuples = csa_profile.stop_profiles[
            2].get_final_optimal_labels()
        self.assertEqual(len(stop_2_pareto_tuples), 2)
        self.assertIn(LabelTimeSimple(40, 50), stop_2_pareto_tuples)
        self.assertIn(LabelTimeSimple(25, 35), stop_2_pareto_tuples)

        source_stop_profile = csa_profile.stop_profiles[self.source_stop]
        source_stop_pareto_optimal_tuples = source_stop_profile.get_final_optimal_labels(
        )

        pareto_tuples = list()
        pareto_tuples.append(
            LabelTimeSimple(departure_time=10, arrival_time_target=35))
        pareto_tuples.append(
            LabelTimeSimple(departure_time=20, arrival_time_target=50))
        pareto_tuples.append(
            LabelTimeSimple(departure_time=32, arrival_time_target=55))

        self._assert_pareto_labels_equal(pareto_tuples,
                                         source_stop_pareto_optimal_tuples)
Example #16
0
 def test_temporal_distances_no_transit_trips_within_range(self):
     pairs = [
         LabelTimeSimple(departure_time=11, arrival_time_target=12),
     ]
     profile = NodeProfileSimple(walk_to_target_duration=5)
     for pair in pairs:
         profile.update_pareto_optimal_tuples(pair)
     analyzer = NodeProfileAnalyzerTime.from_profile(profile, 0, 10)
     self.assertAlmostEqual(5, analyzer.max_temporal_distance())
     self.assertAlmostEqual(2, analyzer.min_temporal_distance())
     self.assertAlmostEqual((7 * 5 + 3 * (5 + 2) / 2.) / 10.0,
                            analyzer.mean_temporal_distance())
     self.assertAlmostEqual(5, analyzer.median_temporal_distance())
Example #17
0
    def test_all_plots(self):
        profile = NodeProfileSimple(25)
        pt1 = LabelTimeSimple(departure_time=10, arrival_time_target=30)
        profile.update_pareto_optimal_tuples(pt1)
        analyzer = NodeProfileAnalyzerTime.from_profile(profile, 0, 10)
        analyzer.plot_temporal_distance_profile(plot_tdist_stats=True)
        analyzer.plot_temporal_distance_cdf()
        analyzer.plot_temporal_distance_pdf()
        plt.show()

        profile = NodeProfileSimple()
        profile.update_pareto_optimal_tuples(
            LabelTimeSimple(departure_time=2 * 60,
                            arrival_time_target=11 * 60))
        profile.update_pareto_optimal_tuples(
            LabelTimeSimple(departure_time=20 * 60,
                            arrival_time_target=25 * 60))
        profile.update_pareto_optimal_tuples(
            LabelTimeSimple(departure_time=40 * 60,
                            arrival_time_target=45 * 60))
        analyzer = NodeProfileAnalyzerTime.from_profile(profile, 0, 60 * 60)
        analyzer.plot_temporal_distance_profile()
        analyzer.plot_temporal_distance_cdf()
        analyzer.plot_temporal_distance_pdf()

        profile = NodeProfileSimple()
        profile.update_pareto_optimal_tuples(
            LabelTimeSimple(departure_time=2 * 60, arrival_time_target=3 * 60))
        profile.update_pareto_optimal_tuples(
            LabelTimeSimple(departure_time=4 * 60,
                            arrival_time_target=25 * 60))
        analyzer = NodeProfileAnalyzerTime.from_profile(profile, 0, 5 * 60)
        analyzer.plot_temporal_distance_profile()
        analyzer.plot_temporal_distance_cdf()
        analyzer.plot_temporal_distance_pdf()

        pt1 = LabelTimeSimple(departure_time=1, arrival_time_target=2)
        pt2 = LabelTimeSimple(
            departure_time=4,
            arrival_time_target=5)  # not taken into account by the analyzer
        profile = NodeProfileSimple(1.5)
        profile.update_pareto_optimal_tuples(pt1)
        profile.update_pareto_optimal_tuples(pt2)
        analyzer = NodeProfileAnalyzerTime.from_profile(profile, 0, 3)
        analyzer.plot_temporal_distance_profile()
        analyzer.plot_temporal_distance_cdf()

        plt.show()
Example #18
0
    def test_temporal_distance_statistics_with_walk2(self):
        pt1 = LabelTimeSimple(departure_time=10, arrival_time_target=30)
        profile = NodeProfileSimple(25)
        profile.update_pareto_optimal_tuples(pt1)
        analyzer = NodeProfileAnalyzerTime.from_profile(profile, 0, 10)
        # analyzer.plot_temporal_distance_profile()
        # plt.show()

        self.assertAlmostEqual(
            25, analyzer.max_temporal_distance())  # 1 -wait-> 2 -travel->4
        self.assertAlmostEqual(20, analyzer.min_temporal_distance())
        self.assertAlmostEqual((7.5 * 25 + 2.5 * 20) / 10.0,
                               analyzer.mean_temporal_distance())
        self.assertAlmostEqual(25, analyzer.median_temporal_distance())
Example #19
0
 def test_time_offset(self):
     max_distances = []
     for offset in [0, 10, 100, 1000]:
         labels = [
             LabelTimeSimple(departure_time=7248 + offset,
                             arrival_time_target=14160 + offset),
         ]
         profile = NodeProfileSimple(walk_to_target_duration=float('inf'))
         for label in labels:
             profile.update_pareto_optimal_tuples(label)
         analyzer = NodeProfileAnalyzerTime.from_profile(
             profile, 0 + offset, 7200 + offset)
         max_distances.append(analyzer.max_temporal_distance())
     max_distances = numpy.array(max_distances)
     assert ((max_distances == max_distances[0]).all())
Example #20
0
    def test_temporal_distance_pdf_with_walk(self):
        profile = NodeProfileSimple(25)
        pt1 = LabelTimeSimple(10, 30)
        profile.update_pareto_optimal_tuples(pt1)
        analyzer = NodeProfileAnalyzerTime.from_profile(profile, 0, 10)

        self.assertEqual(
            len(analyzer.profile_block_analyzer._temporal_distance_pdf()), 3)

        split_points, densities, delta_peaks = analyzer.profile_block_analyzer._temporal_distance_pdf(
        )
        self.assertEqual(len(split_points), 2)
        self.assertEqual(split_points[0], 20)
        self.assertEqual(split_points[1], 25)

        self.assertEqual(len(densities), 1)
        self.assertEqual(densities[0], 0.1)

        self.assertIn(25, delta_peaks)
        self.assertEqual(delta_peaks[25], 0.5)