Example #1
0
 def test_BearingFactor2D(self):
     """
     Test that `measured` works as expected for BearingFactor2D.
     """
     measurement = gtsam.Rot2(.3)
     factor = gtsam.BearingFactor2D(1, 2, measurement,
                                    gtsam.noiseModel.Isotropic.Sigma(1, 1))
     self.gtsamAssertEquals(measurement, factor.measured())
Example #2
0
    def test_BearingRangeFactor2D(self):
        """
        Test that `measured` works as expected for BearingRangeFactor2D.
        """
        range_measurement = 10.0
        bearing_measurement = gtsam.Rot2(0.3)
        factor = gtsam.BearingRangeFactor2D(
            1, 2, bearing_measurement, range_measurement,
            gtsam.noiseModel.Isotropic.Sigma(2, 1))
        measurement = factor.measured()

        self.assertEqual(range_measurement, measurement.range())
        self.gtsamAssertEquals(bearing_measurement, measurement.bearing())
Example #3
0
    def update(self, motion, measurement):
        odometry = self._get_motion_gtsam_format(motion)
        noise = gtsam.noiseModel_Diagonal.Sigmas(
            self._get_motion_noise_covariance(motion, self.alphas))
        predicted_state = self._get_motion_prediction(
            self.estimations.atPose2(self.pose_num), motion)

        self.graph.add(
            gtsam.BetweenFactorPose2(self.pose_num, self.pose_num + 1,
                                     odometry, noise))
        self.estimations.insert(self.pose_num + 1, predicted_state)

        for i in range(len(measurement)):
            bearing = gtsam.Rot2(measurement[i, 1])
            distance = measurement[i, 0]
            landmark_id = 1000 + measurement[i, 2]

            self.graph.add(
                gtsam.BearingRangeFactor2D(self.pose_num, landmark_id, bearing,
                                           distance, self.observation_noise))

            if landmark_id not in self.landmark_indexes:
                self.landmark_indexes.append(landmark_id)
                landmark_position = self._get_landmark_position(
                    self.estimations.atPose2(self.pose_num), distance,
                    bearing.theta())
                self.estimations.insert(landmark_id, landmark_position)
            else:
                landmark_position = self._get_landmark_position(
                    self.estimations.atPose2(self.pose_num), distance,
                    bearing.theta())
                self.estimations.update(landmark_id, landmark_position)

        #params = gtsam.LevenbergMarquardtParams()
        #params = gtsam.NonlinearOptimizerParams()

        #optimiser = gtsam.LevenbergMarquardtOptimizer(self.graph, self.estimations, params)
        #optimiser = gtsam.NonlinearOptimizer(self.graph, self.estimations, params)
        optimiser = gtsam.GaussNewtonOptimizer(self.graph, self.estimations)

        self.result = optimiser.optimize()
        self.estimations = self.result
        self.pose_num += 1
        self._convert_to_np_format()
Example #4
0
def mhjcbb(sim,
           num_tracks=10,
           prob=0.95,
           posterior_pose_md_threshold=1.5,
           prune2_skip=10,
           max_observed_diff=3):
    slams = [[gtsam.ISAM2(), set()]]

    prune2_count = 1
    observed = set()
    for x, (odom, obs) in enumerate(sim.step()):
        for isam2, observed in slams:
            graph = gtsam.NonlinearFactorGraph()
            values = gtsam.Values()
            if x == 0:
                prior_model = gtsam.noiseModel_Diagonal.Sigmas(
                    np.array([sim.sigma_x, sim.sigma_y, sim.sigma_theta]))
                prior_factor = gtsam.PriorFactorPose2(X(0), odom, prior_model)
                graph.add(prior_factor)
                values.insert(X(0), odom)
            else:
                odom_model = gtsam.noiseModel_Diagonal.Sigmas(
                    np.array([sim.sigma_x, sim.sigma_y, sim.sigma_theta]))
                odom_factor = gtsam.BetweenFactorPose2(X(x - 1), X(x), odom,
                                                       odom_model)
                graph.add(odom_factor)
                pose0 = isam2.calculateEstimatePose2(X(x - 1))
                values.insert(X(x), pose0.compose(odom))

            isam2.update(graph, values)

        ################################################################################
        mhjcbb = gtsam.da_MHJCBB2(num_tracks, prob,
                                  posterior_pose_md_threshold)
        for isam2, observed, in slams:
            mhjcbb.initialize(isam2)

        for l, br in obs.items():
            br_model = gtsam.noiseModel_Diagonal.Sigmas(
                np.array([sim.sigma_bearing, sim.sigma_range]))
            mhjcbb.add(gtsam.Rot2(br[0]), br[1], br_model)

        mhjcbb.match()
        ################################################################################

        new_slams = []
        for i in range(mhjcbb.size()):
            track, keys = mhjcbb.get(i)
            keys = [gtsam.symbolIndex(keys.at(i)) for i in range(keys.size())]

            isam2 = gtsam.ISAM2()
            isam2.update(slams[track][0].getFactorsUnsafe(),
                         slams[track][0].calculateEstimate())
            graph = gtsam.NonlinearFactorGraph()
            values = gtsam.Values()
            observed = set(slams[track][1])
            for (l_true, br), l in zip(obs.items(), keys):
                br_model = gtsam.noiseModel_Diagonal.Sigmas(
                    np.array([sim.sigma_bearing, sim.sigma_range]))
                br_factor = gtsam.BearingRangeFactor2D(X(x), L(l),
                                                       gtsam.Rot2(br[0]),
                                                       br[1], br_model)

                graph.add(br_factor)
                if l not in observed:
                    pose1 = isam2.calculateEstimatePose2(X(x))
                    point = gtsam.Point2(br[1] * np.cos(br[0]),
                                         br[1] * np.sin(br[0]))
                    values.insert(L(l), pose1.transform_from(point))
                    observed.add(l)
            isam2.update(graph, values)
            new_slams.append([isam2, observed])
        slams = new_slams
        slams = prune1(slams, x, posterior_pose_md_threshold)

        if len(slams[0][1]) > prune2_count * prune2_skip:
            slams = prune2(slams, max_observed_diff)
            prune2_count += 1

    result = []
    for isam2, observed in slams:
        traj_est = [
            isam2.calculateEstimatePose2(X(x)) for x in range(len(sim.traj))
        ]
        traj_est = np.array([(p.x(), p.y(), p.theta()) for p in traj_est])
        landmark_est = [isam2.calculateEstimatePoint2(L(l)) for l in observed]
        landmark_est = np.array([(p.x(), p.y()) for p in landmark_est])
        result.append((traj_est, landmark_est))
    return result
Example #5
0
def slam(sim, da='jcbb', prob=0.95):
    isam2 = gtsam.ISAM2()
    graph = gtsam.NonlinearFactorGraph()
    values = gtsam.Values()

    observed = set()
    for x, (odom, obs) in enumerate(sim.step()):
        if x == 0:
            prior_model = gtsam.noiseModel_Diagonal.Sigmas(
                np.array([sim.sigma_x, sim.sigma_y, sim.sigma_theta]))
            prior_factor = gtsam.PriorFactorPose2(X(0), odom, prior_model)
            graph.add(prior_factor)
            values.insert(X(0), odom)
        else:
            odom_model = gtsam.noiseModel_Diagonal.Sigmas(
                np.array([sim.sigma_x, sim.sigma_y, sim.sigma_theta]))
            odom_factor = gtsam.BetweenFactorPose2(X(x - 1), X(x), odom,
                                                   odom_model)
            graph.add(odom_factor)
            pose0 = isam2.calculateEstimatePose2(X(x - 1))
            values.insert(X(x), pose0.compose(odom))

        isam2.update(graph, values)
        graph.resize(0)
        values.clear()
        estimate = isam2.calculateEstimate()

        if da == 'dr':
            for l_true, br in obs.items():
                l = len(observed)
                br_model = gtsam.noiseModel_Diagonal.Sigmas(
                    np.array([sim.sigma_bearing, sim.sigma_range]))
                br_factor = gtsam.BearingRangeFactor2D(X(x), L(l),
                                                       gtsam.Rot2(br[0]),
                                                       br[1], br_model)
                graph.add(br_factor)
                if l not in observed:
                    pose1 = isam2.calculateEstimatePose2(X(x))
                    point = gtsam.Point2(br[1] * np.cos(br[0]),
                                         br[1] * np.sin(br[0]))
                    values.insert(L(l), pose1.transform_from(point))
                    observed.add(l)
        elif da == 'perfect':
            for l_true, br in obs.items():
                br_model = gtsam.noiseModel_Diagonal.Sigmas(
                    np.array([sim.sigma_bearing, sim.sigma_range]))
                br_factor = gtsam.BearingRangeFactor2D(X(x), L(l_true),
                                                       gtsam.Rot2(br[0]),
                                                       br[1], br_model)
                graph.add(br_factor)
                if l_true not in observed:
                    pose1 = isam2.calculateEstimatePose2(X(x))
                    point = gtsam.Point2(br[1] * np.cos(br[0]),
                                         br[1] * np.sin(br[0]))
                    values.insert(L(l_true), pose1.transform_from(point))
                    observed.add(l_true)
        elif da == 'jcbb':
            ################################################################################
            jcbb = gtsam.da_JCBB2(isam2, prob)
            for l, br in obs.items():
                br_model = gtsam.noiseModel_Diagonal.Sigmas(
                    np.array([sim.sigma_bearing, sim.sigma_range]))
                jcbb.add(gtsam.Rot2(br[0]), br[1], br_model)

            keys = jcbb.match()
            ################################################################################

            keys = [gtsam.symbolIndex(keys.at(i)) for i in range(keys.size())]
            for (l_true, br), l in zip(obs.items(), keys):
                br_model = gtsam.noiseModel_Diagonal.Sigmas(
                    np.array([sim.sigma_bearing, sim.sigma_range]))
                br_factor = gtsam.BearingRangeFactor2D(X(x), L(l),
                                                       gtsam.Rot2(br[0]),
                                                       br[1], br_model)
                graph.add(br_factor)
                if l not in observed:
                    pose1 = isam2.calculateEstimatePose2(X(x))
                    point = gtsam.Point2(br[1] * np.cos(br[0]),
                                         br[1] * np.sin(br[0]))
                    values.insert(L(l), pose1.transform_from(point))
                    observed.add(l)

        isam2.update(graph, values)
        graph.resize(0)
        values.clear()

    traj_est = [
        isam2.calculateEstimatePose2(X(x)) for x in range(len(sim.traj))
    ]
    traj_est = np.array([(p.x(), p.y(), p.theta()) for p in traj_est])
    landmark_est = [isam2.calculateEstimatePoint2(L(l)) for l in observed]
    landmark_est = np.array([(p.x(), p.y()) for p in landmark_est])
    return [[traj_est, landmark_est]]
Example #6
0
    def update(self, motion, measurement):

        if self.pose_num == 0:
            self.result = self.estimations

        odometry = self._get_motion_gtsam_format(motion)
        noise = gtsam.noiseModel_Diagonal.Sigmas(self._get_motion_noise_covariance(motion, self.alphas))

        predicted_state = self._get_motion_prediction(self.result.atPose2(self.pose_num), motion)

        # adding to the graph odometry value
        self.graph.add(gtsam.BetweenFactorPose2(self.pose_num, self.pose_num + 1, odometry, noise))
        # adding predicted pose to the initial estimations
        self.estimations.insert(self.pose_num + 1, predicted_state)

        for i in range(len(measurement)):
            bearing = gtsam.Rot2(measurement[i, 1])
            distance = measurement[i, 0]
            landmark_id = self.observation_num

            # adding to the graph measurement value
            self.graph.add(
                gtsam.BearingRangeFactor2D(self.pose_num, landmark_id, bearing, distance, self.observation_noise))
            landmark_position = self._get_landmark_position(self.result.atPose2(self.pose_num), distance,
                                                            bearing.theta())

            # adding predicted landmarks position to the initial estimations
            self.estimations.insert(landmark_id, landmark_position)
            self.observation_num += 1

        """
        for i in range(len(measurement)):

            bearing = gtsam.Rot2(measurement[i, 0])
            distance = measurement[i, 1]
            landmark_id = 1000 + measurement[i, 2]

            if landmark_id not in self.landmark_indexes:
                self.landmark_indexes.append(landmark_id)
                landmark_position = self._get_landmark_position(self.result.atPose2(self.pose_num), distance, bearing.theta())
                self.graph.add(gtsam.BearingRangeFactor2D(self.pose_num, landmark_id, bearing, distance, self.observation_noise))
                self.estimations.insert(landmark_id, landmark_position)
            else:
                pass
        """

        # update factorization problem
        #print(noise)
        #print(self.observation_noise)
        print(self.estimations)

        #params = gtsam.LevenbergMarquardtParams()
        #optimiser = gtsam.LevenbergMarquardtOptimizer(self.graph, self.estimations, params)
        #optimiser.optimize()

        self.slam.update(self.graph, self.estimations)

        # clearing current graph and estimations
        self.graph.resize(0)
        self.estimations.clear()
        print(self.graph)

        # getting results
        self.result = self.slam.calculateEstimate()
        #print(self.result)

        self.pose_num += 1
        self._convert_to_np_format()