Example #1
0
    def setEnergy(self, event):
        global x_ray_image
        gvxr.setMonoChromatic(self.energy_var.get(), "MeV", 1);
        x_ray_image = gvxr.computeXRayImage();
        gvxr.displayScene()
        self.xray_vis.draw(x_ray_image);

        selection = "Energy = " + str((self.energy_var.get())) + ' MeV'
        self.energy_label.config(text = selection)
Example #2
0
    def rotationScene(self, widget):
        global x_ray_image;
        selection = "Angle = " + str(int(self.rotation_var.get())) + ' deg'
        self.angle_label.config(text = selection)

        gvxr.rotateScene(self.rotation_var.get() - self.last_angle, 0, -1, 0);
        self.last_angle = self.rotation_var.get();

        x_ray_image = gvxr.computeXRayImage();
        gvxr.displayScene()
        self.xray_vis.draw(x_ray_image);
Example #3
0
 def idle(self):
     gvxr.displayScene()
     '''w=random.randint(1,100)
     h=random.randint(1,100)
     canvas.create_rectangle(w,h,w+150,h+150)
     def callback(event):
         if True:
             print("clicked2")
             tk.after_cancel(task)
     canvas.bind("<Button-1>",callback)
     tk.after(1000,task) '''
     self.root.after(10, self.idle)
Example #4
0
    def setSourceShape(self):
        if self.source_shape.get() == 0:
            print ("Use point source");
            gvxr.usePointSource();

        elif self.source_shape.get() == 1:
            print ("Use parallel beam");
            gvxr.useParallelBeam();

        x_ray_image = gvxr.computeXRayImage();
        gvxr.displayScene()
        self.xray_vis.draw(x_ray_image);
Example #5
0
    def artefactFilteringSelection(self):
        global x_ray_image;

        value = self.artefact_filtering_var.get();
        if value is 0:
            gvxr.disableArtefactFiltering();
        elif value is 1:
            gvxr.enableArtefactFilteringOnCPU();
        elif value is 2:
            gvxr.enableArtefactFilteringOnGPU();

        x_ray_image = gvxr.computeXRayImage();
        gvxr.displayScene()
        self.xray_vis.draw(x_ray_image);
    def setZRotation(self, event):
        global x_ray_image

        selection = "Rotation in Z = " + str(
            (self.z_rotation_value.get())) + ' degrees'
        self.z_rotation_label.config(text=selection)
        gvxr.rotateNode(
            self.selected_node,
            self.z_rotation_value.get() -
            self.rotation_dictionary[self.selected_node][2], 0, 0, 1)
        self.rotation_dictionary[
            self.selected_node][0] = self.z_rotation_value.get()
        x_ray_image = gvxr.computeXRayImage()
        gvxr.displayScene()
        self.xray_vis.draw(x_ray_image)
    def setReset(self):
        print("Reset roation of ", self.selected_node)
        self.x_rotation_value.set(0)
        self.y_rotation_value.set(0)
        self.z_rotation_value.set(0)

        self.setZRotation(0)
        self.setYRotation(0)
        self.setXRotation(0)

        gvxr.setNodeTransformationMatrix(
            self.selected_node,
            self.transformation_dictionary[self.selected_node])
        x_ray_image = gvxr.computeXRayImage()
        gvxr.displayScene()
        self.xray_vis.draw(x_ray_image)
Example #8
0
    def OnDoubleClick(self, event):
        self.OnSingleClick(event)
        text = self.tree.item(self.selected_item,"text");

        if text == "root":
            print ("Ignore root")
        elif text == "":
            print ("Ignore empty name")
        else:
            print("you clicked on ", text)

            material_selection = MaterialSelection.MaterialSelection(self.root, text, gvxr.getMaterialLabel(text), gvxr.getDensity(text));
            child_children = gvxr.getNumberOfChildren(text);

            if material_selection.cancel == False:
                global x_ray_image;

                # Element
                if material_selection.materialType.get() == 0:
                    gvxr.setElement(text, material_selection.element_name.get());
                    gvxr.setDensity(text, float(material_selection.density.get()), "g/cm3");
                # Mixture
                elif material_selection.materialType.get() == 1:
                    gvxr.setMixture(text, material_selection.mixture.get());
                    gvxr.setDensity(text, float(material_selection.density.get()), "g/cm3");
                # Compound
                elif material_selection.materialType.get() == 2:
                    gvxr.setCompound(text, material_selection.compound.get());
                    gvxr.setDensity(text, float(material_selection.density.get()), "g/cm3");
                # Hounsfield unit
                elif material_selection.materialType.get() == 3:
                    gvxr.setHU(text, material_selection.hounsfield_value.get());
                # Mass attenuation coefficient
                elif material_selection.materialType.get() == 4:
                    gvxr.setDensity(text, float(material_selection.density.get()), "g/cm3");
                    print("?");
                # Linear attenuation coefficient
                elif material_selection.materialType.get() == 5:
                    gvxr.setDensity(text, float(material_selection.density.get()), "g/cm3");
                    print("?");

                self.tree.item(self.selected_item, values=(str(child_children), gvxr.getMaterialLabel(text), str(gvxr.getDensity(text))))

                x_ray_image = gvxr.computeXRayImage();
                gvxr.displayScene()
                self.xray_vis.draw(x_ray_image);
Example #9
0
def main(argv):
    global x_ray_image

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "-input",
        type=str,
        help=
        "Input file (see http://assimp.sourceforge.net/main_features_formats.html for a list of supported file formats)"
    )
    parser.add_argument(
        "-unit",
        type=str,
        help="Unit of length corresponding to the input",
        choices=["um", "mm", "cm", "dm", "m", "dam", "hm", "km"])

    args = parser.parse_args()
    if args.input and args.unit:
        # Create an OpenGL context
        print("Create an OpenGL context")
        gvxr.createWindow()
        gvxr.setWindowSize(512, 512)

        # Set up the beam
        print("Set up the beam")
        gvxr.setSourcePosition(100.0, 0.0, 0.0, "cm")
        gvxr.usePointSource()
        #gvxr.useParallelBeam();
        gvxr.setMonoChromatic(0.08, "MeV", 1)

        # Set up the detector
        print("Set up the detector")
        gvxr.setDetectorPosition(-40.0, 0.0, 0.0, "cm")
        gvxr.setDetectorUpVector(0, 0, -1)
        gvxr.setDetectorNumberOfPixels(1024, 1024)
        gvxr.setDetectorPixelSize(0.5, 0.5, "mm")

        # Load the data
        print("Load the data")

        gvxr.loadSceneGraph(args.input, args.unit)

        gvxr.disableArtefactFiltering()

        #gvxr.loadMeshFile("chest", "./HVPTest/chest2.obj", "mm");
        #gvxr.invertNormalVectors("armR");
        #gvxr.invertNormalVectors("chest");

        node_label_set = []
        node_label_set.append('root')

        # The list is not empty
        while (len(node_label_set)):

            # Get the last node
            last_node = node_label_set[-1]

            # Initialise the material properties
            #print("Set ", label, "'s Hounsfield unit");
            #gvxr.setHU(label, 1000)
            Z = gvxr.getElementAtomicNumber("H")
            gvxr.setElement(last_node, gvxr.getElementName(Z))

            # Change the node colour to a random colour
            gvxr.setColour(last_node, random.uniform(0, 1),
                           random.uniform(0, 1), random.uniform(0, 1), 1.0)

            # Remove it from the list
            node_label_set.pop()

            # Add its Children
            for i in range(gvxr.getNumberOfChildren(last_node)):
                node_label_set.append(gvxr.getChildLabel(last_node, i))
            '''
        for label in gvxr.getMeshLabelSet():
            print("Move ", label, " to the centre");
            #gvxr.moveToCentre(label);

            #print("Move the mesh to the center");
            #gvxr.moveToCenter(label);

            #gvxr.invertNormalVectors(label);
        '''
        #gvxr.moveToCentre();
        gvxr.moveToCentre('root')

        # Compute an X-ray image
        #print("Compute an X-ray image");
        #gvxr.disableArtefactFiltering();
        #gvxr.enableArtefactFilteringOnGPU();
        # Not working anymore gvxr.enableArtefactFilteringOnGPU();
        # Not working anymore gvxr.enableArtefactFilteringOnCPU();
        x_ray_image = np.array(gvxr.computeXRayImage())
        '''x_ray_image -= 0.0799;
        x_ray_image /= 0.08 - 0.0799;
        plt.ioff();
        plt.imshow(x_ray_image, cmap="gray");
        plt.show()
        '''
        #gvxr.setShiftFilter(-0.0786232874);
        #gvxr.setScaleFilter(726.368958);

        gvxr.displayScene()

        app = App.App(0.08)
Example #10
0
# Read results and visualise predicted 3D hand
parser = argparse.ArgumentParser()

parser.add_argument("--results_csv", help="Result csv files")
args = parser.parse_args()

setXRayEnvironment()

number_of_distances = 2
number_of_angles = 22
input_csv = pd.read_csv(args.results_csv, usecols=['Parameters'])

prediction = dataFrameToFloat(input_csv['Parameters'][0])

SOD = prediction[0] * prediction[1]
SDD = prediction[1]
setXRayParameters(SOD, SDD)

angles = []

for a in range(number_of_angles):
    angles.append(prediction[a + number_of_distances])

updateLocalTransformationMatrixSet(angles, 'All')

gvxr.computeXRayImage()

gvxr.displayScene()
gvxr.renderLoop()