elif opts.doLuminosity: names = opts.name.split(",") filenames = [] legend_names = [] for name in names: for ii, model in enumerate(models): filename = '%s/%s/%s_Lbol.dat' % (outputDir, model, name) if not os.path.isfile(filename): continue filenames.append(filename) legend_names.append(models_ref[ii]) break Lbols, names = lightcurve_utils.read_files_lbol(filenames) if opts.doModels: model_data = {} modelfiles = opts.modelfile.split(",") for modelfile in modelfiles: modelfile = os.path.join(opts.plotDir, modelfile) modelfileSplit = modelfile.split("/") model_out = np.loadtxt(modelfile) errorbudget = float(modelfileSplit[-2]) modelType = modelfileSplit[-4] model = modelfileSplit[-6].split("_")[0] if model == "BNS" and modelType == "ejecta":
def calc_svd_lbol(tini,tmax,dt, n_coeff = 100, model = "BaKa2016"): print("Calculating SVD model of bolometric luminosity...") if model == "BaKa2016": fileDir = "../output/barnes_kilonova_spectra" elif model == "Ka2017": fileDir = "../output/kasen_kilonova_grid" elif model == "RoFe2017": fileDir = "../output/macronovae-rosswog_wind" filenames = glob.glob('%s/*_Lbol.dat'%fileDir) lbols, names = lightcurve_utils.read_files_lbol(filenames) lbolkeys = lbols.keys() tt = np.arange(tini,tmax+dt,dt) for key in lbolkeys: keySplit = key.split("_") if keySplit[0] == "rpft": mej0 = float("0." + keySplit[1].replace("m","")) vej0 = float("0." + keySplit[2].replace("v","")) lbols[key]["mej"] = mej0 lbols[key]["vej"] = vej0 elif keySplit[0] == "knova": mej0 = float(keySplit[3].replace("m","")) vej0 = float(keySplit[4].replace("vk","")) if len(keySplit) == 6: Xlan0 = 10**float(keySplit[5].replace("Xlan1e","")) elif len(keySplit) == 7: if "Xlan1e" in keySplit[6]: Xlan0 = 10**float(keySplit[6].replace("Xlan1e","")) elif "Xlan1e" in keySplit[5]: Xlan0 = 10**float(keySplit[5].replace("Xlan1e","")) #if (mej0 == 0.05) and (vej0 == 0.2) and (Xlan0 == 1e-3): # del lbols[key] # continue lbols[key]["mej"] = mej0 lbols[key]["vej"] = vej0 lbols[key]["Xlan"] = Xlan0 elif keySplit[0] == "SED": lbols[key]["mej"], lbols[key]["vej"], lbols[key]["Ye"] = lightcurve_utils.get_macronovae_rosswog(key) ii = np.where(np.isfinite(lbols[key]["Lbol"]))[0] f = interp.interp1d(lbols[key]["tt"][ii], np.log10(lbols[key]["Lbol"][ii]), fill_value='extrapolate') lbolinterp = 10**f(tt) lbols[key]["Lbol"]= np.log10(lbolinterp) lbolkeys = lbols.keys() lbol_array = [] param_array = [] for key in lbolkeys: lbol_array.append(lbols[key]["Lbol"]) if model == "BaKa2016": param_array.append([np.log10(lbols[key]["mej"]),lbols[key]["vej"]]) elif model == "Ka2017": param_array.append([np.log10(lbols[key]["mej"]),np.log10(lbols[key]["vej"]),np.log10(lbols[key]["Xlan"])]) elif model == "RoFe2017": param_array.append([np.log10(lbols[key]["mej"]),lbols[key]["vej"],lbols[key]["Ye"]]) param_array_postprocess = np.array(param_array) param_mins, param_maxs = np.min(param_array_postprocess,axis=0),np.max(param_array_postprocess,axis=0) for i in range(len(param_mins)): param_array_postprocess[:,i] = (param_array_postprocess[:,i]-param_mins[i])/(param_maxs[i]-param_mins[i]) lbol_array_postprocess = np.array(lbol_array) mins,maxs = np.min(lbol_array_postprocess,axis=0),np.max(lbol_array_postprocess,axis=0) for i in range(len(mins)): lbol_array_postprocess[:,i] = (lbol_array_postprocess[:,i]-mins[i])/(maxs[i]-mins[i]) lbol_array_postprocess[np.isnan(lbol_array_postprocess)]=0.0 UA, sA, VA = np.linalg.svd(lbol_array_postprocess, full_matrices=True) VA = VA.T n, n = UA.shape m, m = VA.shape cAmat = np.zeros((n_coeff,n)) cAvar = np.zeros((n_coeff,n)) for i in range(n): cAmat[:,i] = np.dot(lbol_array_postprocess[i,:],VA[:,:n_coeff]) ErrorLevel = 2.0 errors = ErrorLevel*lbol_array_postprocess[i,:] cAvar[:,i] = np.diag(np.dot(VA[:,:n_coeff].T,np.dot(np.diag(np.power(errors,2.)),VA[:,:n_coeff]))) cAstd = np.sqrt(cAvar) nsvds, nparams = param_array_postprocess.shape kernel = 1.0 * RationalQuadratic(length_scale=1.0, alpha=0.1) gps = [] for i in range(n_coeff): gp = GaussianProcessRegressor(kernel=kernel,n_restarts_optimizer=0) gp.fit(param_array_postprocess, cAmat[i,:]) gps.append(gp) svd_model = {} svd_model["n_coeff"] = n_coeff svd_model["param_array"] = param_array svd_model["cAmat"] = cAmat svd_model["cAstd"] = cAstd svd_model["VA"] = VA svd_model["param_mins"] = param_mins svd_model["param_maxs"] = param_maxs svd_model["mins"] = mins svd_model["maxs"] = maxs svd_model["gps"] = gps svd_model["tt"] = tt print("Finished calculating SVD model of bolometric luminosity...") return svd_model
def calc_svd_lbol(tini, tmax, dt, n_coeff=100, model="BaKa2016"): print("Calculating SVD model of bolometric luminosity...") if model == "BaKa2016": fileDir = "../output/barnes_kilonova_spectra" elif model == "Ka2017": fileDir = "../output/kasen_kilonova_grid" elif model == "RoFe2017": fileDir = "../output/macronovae-rosswog_wind" elif model == "Bu2019": fileDir = "../output/bulla_1D" fileDir = "../output/bulla_1D_phi0" fileDir = "../output/bulla_1D_phi90" elif model == "Bu2019inc": fileDir = "../output/bulla_2D" elif model == "Bu2019lf": fileDir = "../output/bulla_2Component_lfree" elif model == "Bu2019lr": fileDir = "../output/bulla_2Component_lrich" elif model == "Bu2019lm": fileDir = "../output/bulla_2Component_lmid" elif model == "Bu2019lw": fileDir = "../output/bulla_2Component_lmid_0p005" elif model == "Bu2019bc": fileDir = "../output/bulla_blue_cone" elif model == "Bu2019re": fileDir = "../output/bulla_red_ellipse" elif model == "Bu2019op": fileDir = "../output/bulla_opacity" elif model == "Bu2019ops": fileDir = "../output/bulla_opacity_slim" elif model == "Bu2019rp": fileDir = "../output/bulla_reprocess" elif model == "Bu2019rps": fileDir = "../output/bulla_reprocess_slim" filenames = glob.glob('%s/*_Lbol.dat' % fileDir) lbols, names = lightcurve_utils.read_files_lbol(filenames) lbolkeys = lbols.keys() tt = np.arange(tini, tmax + dt, dt) for key in lbolkeys: keySplit = key.split("_") if keySplit[0] == "rpft": mej0 = float("0." + keySplit[1].replace("m", "")) vej0 = float("0." + keySplit[2].replace("v", "")) lbols[key]["mej"] = mej0 lbols[key]["vej"] = vej0 elif keySplit[0] == "knova": mej0 = float(keySplit[3].replace("m", "")) vej0 = float(keySplit[4].replace("vk", "")) if len(keySplit) == 6: Xlan0 = 10**float(keySplit[5].replace("Xlan1e", "")) elif len(keySplit) == 7: if "Xlan1e" in keySplit[6]: Xlan0 = 10**float(keySplit[6].replace("Xlan1e", "")) elif "Xlan1e" in keySplit[5]: Xlan0 = 10**float(keySplit[5].replace("Xlan1e", "")) #if (mej0 == 0.05) and (vej0 == 0.2) and (Xlan0 == 1e-3): # del lbols[key] # continue lbols[key]["mej"] = mej0 lbols[key]["vej"] = vej0 lbols[key]["Xlan"] = Xlan0 elif keySplit[0] == "SED": lbols[key]["mej"], lbols[key]["vej"], lbols[key][ "Ye"] = lightcurve_utils.get_macronovae_rosswog(key) elif "gamma" in key: kappaLF = float(keySplit[2].replace("kappaLF", "")) gammaLF = float(keySplit[3].replace("gammaLF", "")) kappaLR = float(keySplit[4].replace("kappaLR", "")) gammaLR = float(keySplit[5].replace("gammaLR", "")) theta = float(keySplit[6]) lbols[key]["kappaLF"] = kappaLF lbols[key]["gammaLF"] = gammaLF lbols[key]["kappaLR"] = kappaLR lbols[key]["gammaLR"] = gammaLR lbols[key]["theta"] = theta elif "nsns" in key: mejdyn = float(keySplit[2].replace("mejdyn", "")) mejwind = float(keySplit[3].replace("mejwind", "")) phi0 = float(keySplit[4].replace("phi", "")) theta = float(keySplit[5]) lbols[key]["mej_dyn"] = mejdyn lbols[key]["mej_wind"] = mejwind lbols[key]["phi"] = phi0 lbols[key]["theta"] = theta elif "mejdyn" in key: mejdyn = float(keySplit[1].replace("mejdyn", "")) mejwind = float(keySplit[2].replace("mejwind", "")) phi0 = float(keySplit[4].replace("phi", "")) theta = float(keySplit[5]) lbols[key]["mej_dyn"] = mejdyn lbols[key]["mej_wind"] = mejwind lbols[key]["phi"] = phi0 lbols[key]["theta"] = theta elif "bluecone" in key: mej = float(keySplit[2].replace("mej", "")) phi0 = float(keySplit[3].replace("th", "")) theta = float(keySplit[4]) lbols[key]["mej"] = mej lbols[key]["phi"] = 90 - phi0 lbols[key]["theta"] = theta elif "redellips" in key: mej = float(keySplit[2].replace("mej", "")) a0 = float(keySplit[3].replace("a", "")) theta = float(keySplit[4]) lbols[key]["mej"] = mej lbols[key]["a"] = a0 lbols[key]["theta"] = theta elif keySplit[0] == "nph1.0e+06": mej0 = float(keySplit[1].replace("mej", "")) phi0 = float(keySplit[2].replace("phi", "")) theta = float(keySplit[3]) lbols[key]["mej"] = mej0 lbols[key]["phi"] = phi0 #lbols[key]["T"] = T0 lbols[key]["theta"] = theta elif keySplit[0] == "kasenReprocess": mej1 = float(keySplit[2].replace("mejcone", "")) mej2 = float(keySplit[3].replace("mejell", "")) phi = float(keySplit[4].replace("th", "")) a = float(keySplit[5].replace("a", "")) theta = float(keySplit[6]) lbols[key]["mej_1"] = mej1 lbols[key]["mej_2"] = mej2 lbols[key]["phi"] = phi lbols[key]["a"] = a lbols[key]["theta"] = theta ii = np.where(np.isfinite(lbols[key]["Lbol"]))[0] f = interp.interp1d(lbols[key]["tt"][ii], np.log10(lbols[key]["Lbol"][ii]), fill_value='extrapolate') lbolinterp = 10**f(tt) lbols[key]["Lbol"] = np.log10(lbolinterp) lbolkeys = lbols.keys() lbol_array = [] param_array = [] for key in lbolkeys: lbol_array.append(lbols[key]["Lbol"]) if model == "BaKa2016": param_array.append( [np.log10(lbols[key]["mej"]), lbols[key]["vej"]]) elif model == "Ka2017": param_array.append([ np.log10(lbols[key]["mej"]), np.log10(lbols[key]["vej"]), np.log10(lbols[key]["Xlan"]) ]) elif model == "RoFe2017": param_array.append([ np.log10(lbols[key]["mej"]), lbols[key]["vej"], lbols[key]["Ye"] ]) elif model == "Bu2019": param_array.append( [np.log10(lbols[key]["mej"]), np.log10(lbols[key]["T"])]) elif model == "Bu2019inc": param_array.append([ np.log10(lbols[key]["mej"]), lbols[key]["phi"], lbols[key]["theta"] ]) elif model in ["Bu2019lf", "Bu2019lr", "Bu2019lm"]: param_array.append([ np.log10(lbols[key]["mej_dyn"]), np.log10(lbols[key]["mej_wind"]), lbols[key]["phi"], lbols[key]["theta"] ]) elif model in ["Bu2019lw"]: param_array.append([ np.log10(lbols[key]["mej_wind"]), lbols[key]["phi"], lbols[key]["theta"] ]) elif model == "Bu2019bc": param_array.append([ np.log10(lbols[key]["mej"]), lbols[key]["phi"], lbols[key]["theta"] ]) elif model == "Bu2019re": param_array.append([ np.log10(lbols[key]["mej"]), lbols[key]["a"], lbols[key]["theta"] ]) elif model == "Bu2019op": param_array.append([ np.log10(lbols[key]["kappaLF"]), lbols[key]["gammaLF"], np.log10(lbols[key]["kappaLR"]), lbols[key]["gammaLR"] ]) elif model == "Bu2019ops": param_array.append([ np.log10(lbols[key]["kappaLF"]), np.log10(lbols[key]["kappaLR"]), lbols[key]["gammaLR"] ]) elif model == "Bu2019rp": param_array.append([ np.log10(lbols[key]["mej_1"]), np.log10(lbols[key]["mej_2"]), lbols[key]["phi"], lbols[key]["a"], lbols[key]["theta"] ]) elif model == "Bu2019rps": param_array.append([ np.log10(lbols[key]["mej_1"]), np.log10(lbols[key]["mej_2"]), lbols[key]["a"] ]) param_array_postprocess = np.array(param_array) param_mins, param_maxs = np.min(param_array_postprocess, axis=0), np.max(param_array_postprocess, axis=0) for i in range(len(param_mins)): param_array_postprocess[:, i] = (param_array_postprocess[:, i] - param_mins[i]) / (param_maxs[i] - param_mins[i]) lbol_array_postprocess = np.array(lbol_array) mins, maxs = np.min(lbol_array_postprocess, axis=0), np.max(lbol_array_postprocess, axis=0) for i in range(len(mins)): lbol_array_postprocess[:, i] = (lbol_array_postprocess[:, i] - mins[i]) / (maxs[i] - mins[i]) lbol_array_postprocess[np.isnan(lbol_array_postprocess)] = 0.0 UA, sA, VA = np.linalg.svd(lbol_array_postprocess, full_matrices=True) VA = VA.T n, n = UA.shape m, m = VA.shape cAmat = np.zeros((n_coeff, n)) cAvar = np.zeros((n_coeff, n)) for i in range(n): cAmat[:, i] = np.dot(lbol_array_postprocess[i, :], VA[:, :n_coeff]) ErrorLevel = 2.0 errors = ErrorLevel * lbol_array_postprocess[i, :] cAvar[:, i] = np.diag( np.dot(VA[:, :n_coeff].T, np.dot(np.diag(np.power(errors, 2.)), VA[:, :n_coeff]))) cAstd = np.sqrt(cAvar) nsvds, nparams = param_array_postprocess.shape kernel = 1.0 * RationalQuadratic(length_scale=1.0, alpha=0.1) gps = [] for i in range(n_coeff): gp = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=0) gp.fit(param_array_postprocess, cAmat[i, :]) gps.append(gp) svd_model = {} svd_model["n_coeff"] = n_coeff svd_model["param_array"] = param_array svd_model["cAmat"] = cAmat svd_model["cAstd"] = cAstd svd_model["VA"] = VA svd_model["param_mins"] = param_mins svd_model["param_maxs"] = param_maxs svd_model["mins"] = mins svd_model["maxs"] = maxs svd_model["gps"] = gps svd_model["tt"] = tt print("Finished calculating SVD model of bolometric luminosity...") return svd_model
def calc_svd_lbol(tini,tmax,dt, n_coeff = 100, model = "BaKa2016", gptype="sklearn"): print("Calculating SVD model of bolometric luminosity...") if model == "BaKa2016": fileDir = "../output/barnes_kilonova_spectra" elif model == "Ka2017": fileDir = "../output/kasen_kilonova_grid" elif model == "RoFe2017": fileDir = "../output/macronovae-rosswog_wind" elif model == "Bu2019": fileDir = "../output/bulla_1D" fileDir = "../output/bulla_1D_phi0" fileDir = "../output/bulla_1D_phi90" elif model == "Bu2019inc": fileDir = "../output/bulla_2D" elif model == "Bu2019lf": fileDir = "../output/bulla_2Component_lfree" elif model == "Bu2019lr": fileDir = "../output/bulla_2Component_lrich" elif model == "Bu2019lm": fileDir = "../output/bulla_2Component_lmid" elif model == "Bu2019lw": fileDir = "../output/bulla_2Component_lmid_0p005" elif model == "Bu2019bc": fileDir = "../output/bulla_blue_cone" elif model == "Bu2019re": fileDir = "../output/bulla_red_ellipse" elif model == "Bu2019op": fileDir = "../output/bulla_opacity" elif model == "Bu2019ops": fileDir = "../output/bulla_opacity_slim" elif model == "Bu2019rp": fileDir = "../output/bulla_reprocess" elif model == "Bu2019rps": fileDir = "../output/bulla_reprocess_slim" elif model == "Bu2019rpd": fileDir = "../output/bulla_reprocess_decimated" elif model == "Bu2019nsbh": fileDir = "../output/bulla_2Component_lnsbh" elif model == "Wo2020dyn": fileDir = "../output/bulla_rosswog_dynamical" elif model == "Wo2020dw": fileDir = "../output/bulla_rosswog_wind" filenames = glob.glob('%s/*_Lbol.dat'%fileDir) lbols, names = lightcurve_utils.read_files_lbol(filenames) lbolkeys = lbols.keys() tt = np.arange(tini,tmax+dt,dt) for key in lbolkeys: keySplit = key.split("_") if keySplit[0] == "rpft": mej0 = float("0." + keySplit[1].replace("m","")) vej0 = float("0." + keySplit[2].replace("v","")) lbols[key]["mej"] = mej0 lbols[key]["vej"] = vej0 elif keySplit[0] == "knova": mej0 = float(keySplit[3].replace("m","")) vej0 = float(keySplit[4].replace("vk","")) if len(keySplit) == 6: Xlan0 = 10**float(keySplit[5].replace("Xlan1e","")) elif len(keySplit) == 7: if "Xlan1e" in keySplit[6]: Xlan0 = 10**float(keySplit[6].replace("Xlan1e","")) elif "Xlan1e" in keySplit[5]: Xlan0 = 10**float(keySplit[5].replace("Xlan1e","")) #if (mej0 == 0.05) and (vej0 == 0.2) and (Xlan0 == 1e-3): # del lbols[key] # continue lbols[key]["mej"] = mej0 lbols[key]["vej"] = vej0 lbols[key]["Xlan"] = Xlan0 elif keySplit[0] == "SED": lbols[key]["mej"], lbols[key]["vej"], lbols[key]["Ye"] = lightcurve_utils.get_macronovae_rosswog(key) elif "gamma" in key: kappaLF = float(keySplit[2].replace("kappaLF","")) gammaLF = float(keySplit[3].replace("gammaLF","")) kappaLR = float(keySplit[4].replace("kappaLR","")) gammaLR = float(keySplit[5].replace("gammaLR","")) theta = float(keySplit[6]) lbols[key]["kappaLF"] = kappaLF lbols[key]["gammaLF"] = gammaLF lbols[key]["kappaLR"] = kappaLR lbols[key]["gammaLR"] = gammaLR lbols[key]["theta"] = theta elif "nsns" in key: mejdyn = float(keySplit[2].replace("mejdyn","")) mejwind = float(keySplit[3].replace("mejwind","")) phi0 = float(keySplit[4].replace("phi","")) theta = float(keySplit[5]) lbols[key]["mej_dyn"] = mejdyn lbols[key]["mej_wind"] = mejwind lbols[key]["phi"] = phi0 lbols[key]["theta"] = theta elif keySplit[0] == "nsbh": mej_dyn = float(keySplit[2].replace("mejdyn","")) mej_wind = float(keySplit[3].replace("mejwind","")) phi = float(keySplit[4].replace("phi","")) theta = float(keySplit[5]) lbols[key]["mej_dyn"] = mej_dyn lbols[key]["mej_wind"] = mej_wind #lbols[key]["phi"] = phi lbols[key]["theta"] = theta elif "mejdyn" in key: mejdyn = float(keySplit[1].replace("mejdyn","")) mejwind = float(keySplit[2].replace("mejwind","")) phi0 = float(keySplit[4].replace("phi","")) theta = float(keySplit[5]) lbols[key]["mej_dyn"] = mejdyn lbols[key]["mej_wind"] = mejwind lbols[key]["phi"] = phi0 lbols[key]["theta"] = theta elif "bluecone" in key: mej = float(keySplit[2].replace("mej","")) phi0 = float(keySplit[3].replace("th","")) theta = float(keySplit[4]) lbols[key]["mej"] = mej lbols[key]["phi"] = 90-phi0 lbols[key]["theta"] = theta elif "redellips" in key: mej = float(keySplit[2].replace("mej","")) a0 = float(keySplit[3].replace("a","")) theta = float(keySplit[4]) lbols[key]["mej"] = mej lbols[key]["a"] = a0 lbols[key]["theta"] = theta elif keySplit[0] == "nph1.0e+06": mej0 = float(keySplit[1].replace("mej","")) phi0 = float(keySplit[2].replace("phi","")) theta = float(keySplit[3]) lbols[key]["mej"] = mej0 lbols[key]["phi"] = phi0 #lbols[key]["T"] = T0 lbols[key]["theta"] = theta elif keySplit[0] == "kasenReprocess": mej1 = float(keySplit[2].replace("mejcone","")) mej2 = float(keySplit[3].replace("mejell","")) phi = float(keySplit[4].replace("th","")) a = float(keySplit[5].replace("a","")) theta = float(keySplit[6]) lbols[key]["mej_1"] = mej1 lbols[key]["mej_2"] = mej2 lbols[key]["phi"] = phi lbols[key]["a"] = a lbols[key]["theta"] = theta elif keySplit[0] == "RGAdyn": mej = float(keySplit[2].replace("mej","")) a = float(keySplit[3].replace("a","")) sd = float(keySplit[4].replace("sd","")) theta = float(keySplit[5]) lbols[key]["mej"] = mej lbols[key]["a"] = a lbols[key]["sd"] = sd lbols[key]["theta"] = theta elif keySplit[0] == "WoWind": mej = float(keySplit[2].replace("mej","")) rwind = float(keySplit[3].replace("v","")) theta = float(keySplit[4]) lbols[key]["mej"] = mej lbols[key]["rwind"] = rwind lbols[key]["theta"] = theta ii = np.where(np.isfinite(lbols[key]["Lbol"]))[0] f = interp.interp1d(lbols[key]["tt"][ii], np.log10(lbols[key]["Lbol"][ii]), fill_value='extrapolate') lbolinterp = 10**f(tt) lbols[key]["Lbol"]= np.log10(lbolinterp) lbolkeys = lbols.keys() lbol_array = [] param_array = [] for key in lbolkeys: lbol_array.append(lbols[key]["Lbol"]) if model == "BaKa2016": param_array.append([np.log10(lbols[key]["mej"]),lbols[key]["vej"]]) elif model == "Ka2017": param_array.append([np.log10(lbols[key]["mej"]),np.log10(lbols[key]["vej"]),np.log10(lbols[key]["Xlan"])]) elif model == "RoFe2017": param_array.append([np.log10(lbols[key]["mej"]),lbols[key]["vej"],lbols[key]["Ye"]]) elif model == "Bu2019": param_array.append([np.log10(lbols[key]["mej"]),np.log10(lbols[key]["T"])]) elif model == "Bu2019inc": param_array.append([np.log10(lbols[key]["mej"]),lbols[key]["phi"],lbols[key]["theta"]]) elif model in ["Bu2019lf","Bu2019lr","Bu2019lm"]: param_array.append([np.log10(lbols[key]["mej_dyn"]),np.log10(lbols[key]["mej_wind"]),lbols[key]["phi"],lbols[key]["theta"]]) elif model in ["Bu2019nsbh"]: param_array.append([np.log10(lbols[key]["mej_dyn"]),np.log10(lbols[key]["mej_wind"]),lbols[key]["theta"]]) elif model in ["Bu2019lw"]: param_array.append([np.log10(lbols[key]["mej_wind"]),lbols[key]["phi"],lbols[key]["theta"]]) elif model == "Bu2019bc": param_array.append([np.log10(lbols[key]["mej"]),lbols[key]["phi"],lbols[key]["theta"]]) elif model == "Bu2019re": param_array.append([np.log10(lbols[key]["mej"]),lbols[key]["a"],lbols[key]["theta"]]) elif model == "Bu2019op": param_array.append([np.log10(lbols[key]["kappaLF"]),lbols[key]["gammaLF"],np.log10(lbols[key]["kappaLR"]),lbols[key]["gammaLR"]]) elif model == "Bu2019ops": param_array.append([np.log10(lbols[key]["kappaLF"]),np.log10(lbols[key]["kappaLR"]),lbols[key]["gammaLR"]]) elif model in ["Bu2019rp","Bu2019rpd"]: param_array.append([np.log10(lbols[key]["mej_1"]),np.log10(lbols[key]["mej_2"]),lbols[key]["phi"],lbols[key]["a"],lbols[key]["theta"]]) elif model == "Bu2019rps": param_array.append([np.log10(lbols[key]["mej_1"]),np.log10(lbols[key]["mej_2"]),lbols[key]["a"]]) elif model == "Wo2020dyn": param_array.append([np.log10(lbols[key]["mej"]),lbols[key]["a"],lbols[key]["sd"],lbols[key]["theta"]]) elif model == "Wo2020dw": param_array.append([np.log10(lbols[key]["mej"]),lbols[key]["rwind"],lbols[key]["theta"]]) param_array_postprocess = np.array(param_array) param_mins, param_maxs = np.min(param_array_postprocess,axis=0),np.max(param_array_postprocess,axis=0) for i in range(len(param_mins)): param_array_postprocess[:,i] = (param_array_postprocess[:,i]-param_mins[i])/(param_maxs[i]-param_mins[i]) lbol_array_postprocess = np.array(lbol_array) mins,maxs = np.min(lbol_array_postprocess,axis=0),np.max(lbol_array_postprocess,axis=0) for i in range(len(mins)): lbol_array_postprocess[:,i] = (lbol_array_postprocess[:,i]-mins[i])/(maxs[i]-mins[i]) lbol_array_postprocess[np.isnan(lbol_array_postprocess)]=0.0 UA, sA, VA = np.linalg.svd(lbol_array_postprocess, full_matrices=True) VA = VA.T n, n = UA.shape m, m = VA.shape cAmat = np.zeros((n_coeff,n)) cAvar = np.zeros((n_coeff,n)) for i in range(n): cAmat[:,i] = np.dot(lbol_array_postprocess[i,:],VA[:,:n_coeff]) ErrorLevel = 2.0 errors = ErrorLevel*lbol_array_postprocess[i,:] cAvar[:,i] = np.diag(np.dot(VA[:,:n_coeff].T,np.dot(np.diag(np.power(errors,2.)),VA[:,:n_coeff]))) cAstd = np.sqrt(cAvar) nsvds, nparams = param_array_postprocess.shape if gptype == "sklearn": kernel = 1.0 * RationalQuadratic(length_scale=1.0, alpha=0.1) gps = [] for i in range(n_coeff): gp = GaussianProcessRegressor(kernel=kernel,n_restarts_optimizer=0) gp.fit(param_array_postprocess, cAmat[i,:]) gps.append(gp) elif gptype == "gpytorch": # initialize likelihood and model likelihood = gpytorch.likelihoods.GaussianLikelihood() #training_iter = 10 training_iter = 1 gps = [] for i in range(n_coeff): if np.mod(i,5) == 0: print('Coefficient %d/%d...' % (i, n_coeff)) train_x = torch.from_numpy(param_array_postprocess).float() train_y = torch.from_numpy(cAmat[i,:]).float() if torch.cuda.is_available(): train_x = train_x.cuda() train_y = train_y.cuda() likelihood = likelihood.cuda() model = ExactGPModel(train_x, train_y, likelihood) if torch.cuda.is_available(): model = model.cuda() # Find optimal model hyperparameters model.train() likelihood.train() # Use the adam optimizer optimizer = torch.optim.Adam([{'params': model.parameters()}], lr=0.1) # "Loss" for GPs - the marginal log likelihood mll = gpytorch.mlls.ExactMarginalLogLikelihood(likelihood, model) for j in range(training_iter): # Zero gradients from previous iteration optimizer.zero_grad() # Output from model output = model(train_x) # Calc loss and backprop gradients loss = -mll(output, train_y) loss.backward() #print('Coeff %d/%d Iter %d/%d - Loss: %.3f lengthscale: %.3f noise: %.3f' % (i+1, n_coeff, j + 1, training_iter, loss.item(), model.covar_module.base_kernel.lengthscale.item(), model.likelihood.noise.item())) optimizer.step() gps.append(model.state_dict()) svd_model = {} svd_model["n_coeff"] = n_coeff svd_model["param_array"] = param_array svd_model["param_array_postprocess"] = param_array_postprocess svd_model["cAmat"] = cAmat svd_model["cAstd"] = cAstd svd_model["VA"] = VA svd_model["param_mins"] = param_mins svd_model["param_maxs"] = param_maxs svd_model["mins"] = mins svd_model["maxs"] = maxs svd_model["gps"] = gps svd_model["tt"] = tt print("Finished calculating SVD model of bolometric luminosity...") return svd_model