Example #1
0
def _read_data(channel, st, et):
    """
    get data, either from frames or from nds2
    """

    ifo = channel.split(':')[0][0]
    if channel.split(':')[1] == 'GDS-CALIB_STRAIN':
        print ifo + '1_HOFT_C00'
        data = TimeSeries.find(channel, st, et, frametype=ifo + '1_HOFT_C00')
    else:
        data = TimeSeries.find(channel, st, et, frametype=ifo + '1_R')
    return data
Example #2
0
def gen_real_noise(duration,
                   sampling_frequency,
                   det,
                   ref_geocent_time,
                   psd_files=[],
                   real_noise_seg=[None, None]):
    """ pull real noise samples
    """

    # compute the number of time domain samples
    Nt = int(sampling_frequency * duration)

    # Get ifos bilby variable
    ifos = bilby.gw.detector.InterferometerList(det)

    start_open_seg, end_open_seg = real_noise_seg  # 1 sec noise segments
    for ifo_idx, ifo in enumerate(ifos):  # iterate over interferometers
        time_series = TimeSeries.find(
            '%s:GDS-CALIB_STRAIN' % det[ifo_idx], start_open_seg,
            end_open_seg)  # pull timeseries data using gwpy
        ifo.set_strain_data_from_gwpy_timeseries(
            time_series=time_series)  # input new ts into bilby ifo

    noise_sample = ifos[
        0].strain_data.frequency_domain_strain  # get frequency domain strain
    noise_sample /= ifos[
        0].amplitude_spectral_density_array  # assume default psd from bilby
    noise_sample = np.sqrt(2.0 * Nt) * np.fft.irfft(
        noise_sample)  # convert frequency to time domain

    return noise_sample
Example #3
0
def load_data_from_gwpy(gpsstart, gpsend, ifo, channel, frame, fs=4096):
    try:
        data = TimeSeries.find(channel,
                               gpsstart,
                               gpsend,
                               frametype=frame,
                               allow_tape=False)
        value = data.value
        srate = data.sample_rate.value
        epoch = data.epoch.value
        #duration = data.duration.value
        ret = gwStrain(value, epoch, ifo, srate, info=f'{ifo}_strain')
        if srate != fs:
            return ret.resample(fs)
        return ret
    except:
        return CEV.PROCESS_FAIL
Example #4
0
def aux_feat_get(params):
    chan, ifo = params[0], params[1]
    print chan
    full_data = []
    position_chunks = []
    velocity_chunks = []
    try:
        data = TimeSeries.find(chan, t1, t2, ifo + '_R', verbose=True)
        tmp_pos = fir.osem_position(data, new_sample_rate=16)
        tmp_vel = fir.osem_velocity(data, new_sample_rate=16)
        position_chunks.append(tmp_pos.value)
        velocity_chunks.append(tmp_vel.value)
        full_data.append(concatenate(position_chunks))
        full_data.append(concatenate(velocity_chunks))
    except RuntimeError as err:
        return err
    full_data = array(full_data)
    return (chan, full_data)
Example #5
0
    def coherence(cls,
                  channel1,
                  channel2,
                  st,
                  et,
                  overlap=None,
                  pad=False,
                  stride=1,
                  resamplerate1=None,
                  resamplerate2=None):
        """
        Class methond that calculates coherence between two channels
        and return a coherence segment.

        Parameters
        ----------
        channel1 : `str`
            Name of first channel
        channel2 : `str`
            Name of second channel
        st : `int`
            Start time
        et : `int`
            End time
        stride : `int`, optional, default=1 second
            Length of ffts
        overlap : `int`, optional, default=0.5 seconds
            Amount of overlap between ffts
        pad : `bool`
            Determines whether or not to zeropad the data
            when taking ffts

        Returns
        -------
        segment : :class:`PEMCoherenceSegment`
            Coherence segment for these two channels
        """
        # read in data
        if isinstance(channel1, Channel):
            data1 = TimeSeries.find(channel1.name,
                                    st,
                                    et,
                                    frametype=channel1.frametype)
        else:
            data1 = TimeSeries.get(channel1, st, et)
        if resamplerate1 is not None and resamplerate1 < data1.sample_rate.value:
            data1 = data1.resample(resamplerate1)
        if isinstance(channel2, Channel):
            data2 = TimeSeries.find(channel2.name,
                                    st,
                                    et,
                                    frametype=channel2.frametype)
        else:
            data2 = TimeSeries.get(channel2, st, et)
        if resamplerate2 is not None and resamplerate2 < data2.sample_rate.value:
            data2 = data2.resample(resamplerate2)

        # get fft spectrograms
        fftgram1 = cf.fftgram(data1, stride, overlap=overlap, pad=pad)
        fftgram2 = cf.fftgram(data2, stride, overlap=overlap, pad=pad)
        # cut things down if frequency arrays are too long
        # TODO: eventually port this over to `gwpy.spectrogram.Spectrogram.crop()`
        # in some way using the `gwpy.detector.Channel.frequency_range()` specified
        # but want to keep backwards compatability in case strings are supplied
        maxlen = min(fftgram1.shape[1], fftgram2.shape[1])
        # take csd
        csd12 = cf.csdgram(fftgram1[:, :maxlen],
                           fftgram2[:, :maxlen],
                           stride,
                           overlap=overlap,
                           pad=pad)

        # get number of segments analyzed
        N = fftgram1.shape[0]
        # take mean of csd
        csd12 = np.mean(csd12, 0)
        # take mean of fftgrams, take abs to get psds
        psd1 = np.mean(np.abs(fftgram1)**2, 0)
        psd2 = np.mean(np.abs(fftgram2)**2, 0)
        # return the segment
        return PEMCoherenceSegment(channel1, channel2, csd12, psd1, psd2, N,
                                   st, et)
Example #6
0
    segs=get_science_segments(ifo,st,et)
    for seg in segs:
        print seg.start, seg.end


    full_data=[]
    darm_data=[]
    for chan in chan_lst:
        print 'Getting data for', chan
        position_chunks=[]
        velocity_chunks=[]
        q_chunks=[]
        for t1,t2 in chunk_segments(segs,chunk,pad):
            print 'Getting chunk', t1, t2
            data=TimeSeries.find(chan,t1,t2,ifo+'_R',nproc=6,verbose=True)
            tmp_pos=fir.osem_position(data,pad,new_sample_rate=1)
            tmp_vel=fir.osem_velocity(data,pad,new_sample_rate=1)
            position_chunks.append(tmp_pos.value)
            velocity_chunks.append(tmp_vel.value)

            #Calculate q_transform chunks
            tmp_q=fir.q_scan(data,pad,new_sample_rate=1)
            q_tstep=round(tmp_q.shape[0]/float(len(data))) * data.sample_rate.value
            for q_v in range(0+(pad*1000),len(tmp_q)-(pad*1000),1000):
               if q_v == 0+(pad*1000):
                   small_chunksq = tmp_q[q_v,:]
                   small_chunksq = np.asarray(small_chunksq)   
               else: 
                   small_chunksq = np.vstack((small_chunksq,tmp_q[q_v,:]))                             
            q_chunks.append(small_chunksq)