def setupClass(cls): cls.decimal_density = 2 # low accuracy because binning is different res1 = KDE(Xi) res1.fit(kernel="gau", fft=True, bw="silverman") cls.res1 = res1 rfname2 = os.path.join(curdir,'results','results_kde_fft.csv') cls.res_density = np.genfromtxt(open(rfname2, 'rb'))
def setupClass(cls): cls.decimal_density = 2 # low accuracy because binning is different res1 = KDE(Xi) res1.fit(kernel="gau", fft=True, bw="silverman") cls.res1 = res1 rfname2 = os.path.join(curdir, 'results', 'results_kde_fft.csv') cls.res_density = np.genfromtxt(open(rfname2, 'rb'))
def setupClass(cls): res1 = KDE(Xi) weights = np.linspace(1,100,200) res1.fit(kernel="gau", gridsize=50, weights=weights, fft=False, bw="silverman") cls.res1 = res1 rfname = os.path.join(curdir,'results','results_kde_weights.csv') cls.res_density = np.genfromtxt(open(rfname, 'rb'), skip_header=1)
def setupClass(cls): res1 = KDE(Xi) weights = np.linspace(1, 100, 200) res1.fit(kernel="gau", gridsize=50, weights=weights, fft=False, bw="silverman") cls.res1 = res1 rfname = os.path.join(curdir, 'results', 'results_kde_weights.csv') cls.res_density = np.genfromtxt(open(rfname, 'rb'), skip_header=1)
def setupClass(cls): res1 = KDE(Xi) res1.fit(kernel="biw", fft=False, bw="silverman") cls.res1 = res1 cls.res_density = KDEResults["biw_d"]