def plot_cum_effects(self, orth=False, impulse=None, response=None, signif=0.05, plot_params=None, subplot_params=None, plot_stderr=True, stderr_type='asym', repl=1000, seed=None): """ Plot cumulative impulse response functions Parameters ---------- orth : bool, default False Compute orthogonalized impulse responses impulse : string or int variable providing the impulse response : string or int variable affected by the impulse signif : float (0 < signif < 1) Significance level for error bars, defaults to 95% CI subplot_params : dict To pass to subplot plotting funcions. Example: if fonts are too big, pass {'fontsize' : 8} or some number to your taste. plot_params : dict plot_stderr: bool, default True Plot standard impulse response error bands stderr_type: string 'asym': default, computes asymptotic standard errors 'mc': monte carlo standard errors (use rpl) repl: int, default 1000 Number of replications for monte carlo standard errors seed: int np.random.seed for Monte Carlo replications """ if orth: title = 'Cumulative responses responses (orthogonalized)' cum_effects = self.orth_cum_effects lr_effects = self.orth_lr_effects else: title = 'Cumulative responses' cum_effects = self.cum_effects lr_effects = self.lr_effects if stderr_type not in ['asym', 'mc']: raise TypeError else: if stderr_type == 'asym': stderr = self.cum_effect_cov(orth=orth) if stderr_type == 'mc': stderr = self.cum_errband_mc(orth=orth, repl=repl, signif=signif, seed=seed) if not plot_stderr: stderr = None plotting.irf_grid_plot(cum_effects, stderr, impulse, response, self.model.names, title, signif=signif, hlines=lr_effects, subplot_params=subplot_params, plot_params=plot_params, stderr_type=stderr_type)
def plot(self, orth=False, impulse=None, response=None, signif=0.05, plot_params=None, subplot_params=None, plot_stderr=True, stderr_type='asym', repl=1000, seed=None, component=None): """ Plot impulse responses Parameters ---------- orth : bool, default False Compute orthogonalized impulse responses impulse : string or int variable providing the impulse response : string or int variable affected by the impulse signif : float (0 < signif < 1) Significance level for error bars, defaults to 95% CI subplot_params : dict To pass to subplot plotting funcions. Example: if fonts are too big, pass {'fontsize' : 8} or some number to your taste. plot_params : dict plot_stderr: bool, default True Plot standard impulse response error bands stderr_type: string 'asym': default, computes asymptotic standard errors 'mc': monte carlo standard errors (use rpl) repl: int, default 1000 Number of replications for Monte Carlo and Sims-Zha standard errors seed: int np.random.seed for Monte Carlo replications component: array or vector of principal component indices """ periods = self.periods model = self.model svar = self.svar if orth and svar: raise ValueError("For SVAR system, set orth=False") if orth: title = 'Impulse responses (orthogonalized)' irfs = self.orth_irfs elif svar: title = 'Impulse responses (structural)' irfs = self.svar_irfs else: title = 'Impulse responses' irfs = self.irfs if plot_stderr == False: stderr = None elif stderr_type not in ['asym', 'mc', 'sz1', 'sz2', 'sz3']: raise ValueError( "Error type must be either 'asym', 'mc','sz1','sz2', or 'sz3'") else: if stderr_type == 'asym': stderr = self.cov(orth=orth) if stderr_type == 'mc': stderr = self.errband_mc(orth=orth, svar=svar, repl=repl, signif=signif, seed=seed) if stderr_type == 'sz1': stderr = self.err_band_sz1(orth=orth, svar=svar, repl=repl, signif=signif, seed=seed, component=component) if stderr_type == 'sz2': stderr = self.err_band_sz2(orth=orth, svar=svar, repl=repl, signif=signif, seed=seed, component=component) if stderr_type == 'sz3': stderr = self.err_band_sz3(orth=orth, svar=svar, repl=repl, signif=signif, seed=seed, component=component) plotting.irf_grid_plot(irfs, stderr, impulse, response, self.model.names, title, signif=signif, subplot_params=subplot_params, plot_params=plot_params, stderr_type=stderr_type)
def plot(self, orth=False, impulse=None, response=None, signif=0.05, plot_params=None, subplot_params=None, plot_stderr=True, stderr_type='asym', repl=1000, seed=None, component=None): """ Plot impulse responses Parameters ---------- orth : bool, default False Compute orthogonalized impulse responses impulse : string or int variable providing the impulse response : string or int variable affected by the impulse signif : float (0 < signif < 1) Significance level for error bars, defaults to 95% CI subplot_params : dict To pass to subplot plotting funcions. Example: if fonts are too big, pass {'fontsize' : 8} or some number to your taste. plot_params : dict plot_stderr: bool, default True Plot standard impulse response error bands stderr_type: string 'asym': default, computes asymptotic standard errors 'mc': monte carlo standard errors (use rpl) repl: int, default 1000 Number of replications for Monte Carlo and Sims-Zha standard errors seed: int np.random.seed for Monte Carlo replications component: array or vector of principal component indices """ periods = self.periods model = self.model svar = self.svar if orth and svar: raise ValueError("For SVAR system, set orth=False") if orth: title = 'Impulse responses (orthogonalized)' irfs = self.orth_irfs elif svar: title = 'Impulse responses (structural)' irfs = self.svar_irfs else: title = 'Impulse responses' irfs = self.irfs if plot_stderr == False: stderr = None elif stderr_type not in ['asym', 'mc', 'sz1', 'sz2','sz3']: raise ValueError("Error type must be either 'asym', 'mc','sz1','sz2', or 'sz3'") else: if stderr_type == 'asym': stderr = self.cov(orth=orth) if stderr_type == 'mc': stderr = self.errband_mc(orth=orth, svar=svar, repl=repl, signif=signif, seed=seed) if stderr_type == 'sz1': stderr = self.err_band_sz1(orth=orth, svar=svar, repl=repl, signif=signif, seed=seed, component=component) if stderr_type == 'sz2': stderr = self.err_band_sz2(orth=orth, svar=svar, repl=repl, signif=signif, seed=seed, component=component) if stderr_type == 'sz3': stderr = self.err_band_sz3(orth=orth, svar=svar, repl=repl, signif=signif, seed=seed, component=component) plotting.irf_grid_plot(irfs, stderr, impulse, response, self.model.names, title, signif=signif, subplot_params=subplot_params, plot_params=plot_params, stderr_type=stderr_type)