Example #1
0
from gym.envs.external_games.supertuxkart import SuperTuxKart
import sys
import random

SCREENSHOTS = (len(sys.argv) > 1 and sys.argv[1] == '--screenshots')

FRAMEBUFFER_SIZE = 10
env = SuperTuxKart(spf=0.000887,
                   framebuffer_size=FRAMEBUFFER_SIZE,
                   width=800,
                   height=600,
                   level='scotland',
                   mode='time',
                   speedup=1,
                   observe_performance=False)

ACTIONS_WORDS = [
    'none', 'throttle', 'brake', 'use_powerup', 'drift', 'nitro', 'left',
    'right'
]
ACTIONS_NUMBERS = list(range(len(ACTIONS_WORDS)))

screenshot_id = 0


def make_action(action):
    global screenshot_id
    print(action)
    ob, reward, done, scores = env.step(action)
    print(scores)
    print(env.fps)
Example #2
0
import time
from gym import logger
from gym.envs.external_games.supertuxkart import SuperTuxKart

FRAMEBUFFER_SIZE = 4
env = SuperTuxKart(spf=0.000887,
                   framebuffer_size=FRAMEBUFFER_SIZE,
                   width=800,
                   height=600,
                   level='scotland',
                   mode='time')

logger.set_level(logger.DEBUG)

last_gt = None
last_st = None

delta_gts = []
delta_sts = []
step_times = []
tot_game_fps = []
tot_gym_fps = []
for i in range(100):
    before = time.time()
    ob, reward, done, scores = env.step('throttle')
    after = time.time()
    gt = scores['game_time']
    st = scores['system_time']

    if last_st is not None and last_gt is not None:
        delta_gt = gt - last_gt
Example #3
0
    next_state_values = next_state_values.detach()  # return the tensor without connection to its calculation history

    expected_state_action_values = next_state_values * GAMMA + rewards_v
    return nn.MSELoss()(state_action_values, expected_state_action_values)

# **********************************************************************************************************************
# *                                                   TRAINING STARTS                                                  *
# **********************************************************************************************************************


if __name__ == "__main__":
    # set the device -> GPU or CPU
    device = "cuda"
    # create the wrapped environment
    env = SuperTuxKart(spf=0.000887, framebuffer_size=FRAME_BUFFER_SIZE, width=SCREEN_WIDTH, height=SCREEN_HEIGHT,
                       level=GAME_LEVEL, mode=GAME_MODE, speedup=GAME_SPEED, observe_performance=OBS_PERFORMANCE,
                       performance_window_size=WINDOW_ACTIONS, performance_window_overlap=OVERLAP_ACTIONS, laps=LAPS)

# **********************************************************************************************************************
# *                                                  DEFINE THRESHOLD                                                  *
# **********************************************************************************************************************

    if NUM_PREGAMES > 0:
        print('******************************* STARTING PRE GAMES TO SET THE THRESHOLD *******************************')
        # create the net and the target net
        net = dqn_model.DQN((FRAME_BUFFER_SIZE, SCREEN_WIDTH, SCREEN_HEIGHT), len(POSSIBLE_ACTIONS)).to(device)
        tgt_net = dqn_model.DQN((FRAME_BUFFER_SIZE, SCREEN_WIDTH, SCREEN_HEIGHT), len(POSSIBLE_ACTIONS)).to(device)
        net.load_state_dict(torch.load(DEFAULT_ENV_NAME + "-best_RL-baseline.dat"))
        tgt_net.load_state_dict(torch.load(DEFAULT_ENV_NAME + "-best_RL-baseline.dat"))
        print(net)
Example #4
0
                return ['throttle', 'left']
            elif centering < -self.CENTERING_TOLERANCE:
                return ['throttle', 'right']
            else:
                return 'throttle'


if __name__ == '__main__':
    # You can set the level to logger.DEBUG or logger.WARN if you
    # want to change the amount of output.
    logger.set_level(logger.DEBUG)

    env = SuperTuxKart(spf=0.000887,
                       framebuffer_size=4,
                       width=800,
                       height=600,
                       level='scotland',
                       mode='time',
                       speedup=1,
                       observe_performance=False)

    # You provide the directory to write to (can be an existing
    # directory, including one with existing data -- all monitor files
    # will be namespaced). You can also dump to a tempdir if you'd
    # like: tempfile.mkdtemp().
    outdir = '/tmp/random-agent-results'
    agent = SuperTuxKartAgent(env.action_space)

    episode_count = 5
    reward = 0
    scores = None
Example #5
0
    [ACTIONS[5]],  # RIGHT
    [ACTIONS[1], ACTIONS[4]],  # UP + LEFT
    [ACTIONS[1], ACTIONS[5]],  # UP + RIGHT
    [ACTIONS[1], ACTIONS[2]],  # UP + POWER
    [ACTIONS[1], ACTIONS[3]]  # UP + NITRO
]

# set the device -> GPU or CPU
device = "cuda"
# create the wrapped environment
env = SuperTuxKart(spf=0.000887,
                   framebuffer_size=FRAME_BUFFER_SIZE,
                   width=SCREEN_WIDTH,
                   height=SCREEN_HEIGHT,
                   level=GAME_LEVEL,
                   mode=GAME_MODE,
                   speedup=GAME_SPEED,
                   observe_performance=True,
                   performance_window_size=2,
                   performance_window_overlap=1,
                   laps=1)

all_games_positions = []
all_consumptions = []

for game in range(1000):
    env.reset()
    ob, r, is_done, info = env.step(ACTIONS[0])
    while info['game_time'] < 0:
        ob, r, is_done, info = env.step(ACTIONS[0])
    starting_time = info['game_time']