def _gen_rewards(self, rewards_pos: List[Tuple[int, int]]):
     for i, (x, y) in enumerate(rewards_pos):
         g = Goal()
         self.grid.set(x, y, g)
         g.is_goal = False
         if self.reward_position == i % len(rewards_pos):
             g.is_goal = True
Example #2
0
 def _gen_grid(self, width, height):
     
     # Create the grid
     self.grid = Grid(width, height)
     
     # Generate the surrounding walls
     self.grid.horz_wall(0, 0)
     self.grid.horz_wall(0, height - 1)
     self.grid.vert_wall(0, 0)
     self.grid.vert_wall(width - 1, 0)
     
     room_w = width // 2
     room_h = height // 2
     
     # For each row of rooms
     for j in range(0, 2):
         
         # For each column
         for i in range(0, 2):
             xL = i * room_w
             yT = j * room_h
             xR = xL + room_w
             yB = yT + room_h
             
             # Bottom wall and door
             if i + 1 < 2:
                 self.grid.vert_wall(xR, yT, room_h)
                 # pos = (xR, self._rand_int(yT + 1, yB))
                 # self.grid.set(*pos, None)
             
             # Bottom wall and door
             if j + 1 < 2:
                 self.grid.horz_wall(xL, yB, room_w)
                 # pos = (self._rand_int(xL + 1, xR), yB)
                 # self.grid.set(*pos, None)
     
     for hallway in self.hallways.values():
         self.grid.set(*hallway, None)
     
     # Randomize the player start position and orientation
     if self._agent_default_pos is not None:
         self.agent_pos = self._agent_default_pos
         self.grid.set(*self._agent_default_pos, None)
         self.agent_dir = self._rand_int(0, 4)
     else:
         self.place_agent()
     
     if self._goal_default_pos is not None:
         goal = Goal()
         self.grid.set(*self._goal_default_pos, goal)
         goal.init_pos, goal.cur_pos = self._goal_default_pos
     else:
         self.place_obj(Goal())
     
     self.mission = 'Reach the goal'
 def _gen_grid(self, width, height):
     # Create an empty grid
     self.grid = Grid(width, height)
     # Generate the surrounding walls
     self.grid.wall_rect(0, 0, width, height)
     # Place a goal square in random location
     self.goal_pos = (
         np.random.randint(1, self.width-1),
         np.random.randint(1, self.height-1)
     )
     while self.goal_pos == (1,1):
         self.goal_pos = (
             np.random.randint(1, self.width-1),
             np.random.randint(1, self.height-1)
         )
     self.put_obj(
         Goal(), 
         *self.goal_pos
     )
     # Place the agent
     if self.agent_start_pos is not None:
         self.agent_pos = self.agent_start_pos
         self.agent_dir = self.agent_start_dir
     else:
         self.place_agent()
     self.mission = "get to the green goal square"
    def _gen_grid(self, width, height):
        assert width % 2 == 1 and height % 2 == 1  # odd size

        # Create an empty grid
        self.grid = Grid(width, height)

        # Generate the surrounding walls
        self.grid.wall_rect(0, 0, width, height)

        # Place the agent in the top-left corner
        self.agent_pos = (1, 1)
        self.agent_dir = 0

        # Place a goal square in the bottom-right corner
        self.put_obj(Goal(), width - 2, height - 2)

        # Place obstacles (lava or walls)
        v, h = object(), object(
        )  # singleton `vertical` and `horizontal` objects

        # Lava rivers or walls specified by direction and position in grid
        rivers = [(v, i) for i in range(2, height - 2, 2)]
        rivers += [(h, j) for j in range(2, width - 2, 2)]
        self.np_random.shuffle(rivers)
        rivers = rivers[:self.num_crossings]  # sample random rivers
        rivers_v = sorted([pos for direction, pos in rivers if direction is v])
        rivers_h = sorted([pos for direction, pos in rivers if direction is h])
        obstacle_pos = itt.chain(
            itt.product(range(1, width - 1), rivers_h),
            itt.product(rivers_v, range(1, height - 1)),
        )
        for i, j in obstacle_pos:
            self.put_obj(self.obstacle_type(), i, j)

        # Sample path to goal
        path = [h] * len(rivers_v) + [v] * len(rivers_h)
        self.np_random.shuffle(path)

        # Create openings
        limits_v = [0] + rivers_v + [height - 1]
        limits_h = [0] + rivers_h + [width - 1]
        room_i, room_j = 0, 0
        for direction in path:
            if direction is h:
                i = limits_v[room_i + 1]
                j = self.np_random.choice(
                    range(limits_h[room_j] + 1, limits_h[room_j + 1]))
                room_i += 1
            elif direction is v:
                i = self.np_random.choice(
                    range(limits_v[room_i] + 1, limits_v[room_i + 1]))
                j = limits_h[room_j + 1]
                room_j += 1
            else:
                assert False
            self.grid.set(i, j, None)

        self.mission = ("avoid the lava and get to the green goal square"
                        if self.obstacle_type == Lava else
                        "find the opening and get to the green goal square")
Example #5
0
    def _gen_grid(self, width, height):
        super()._gen_grid(width, height)

        # Make sure the two rooms are directly connected by a locked door
        door, _ = self.add_door(0, 0, 0, locked=True, color='blue')
        # Add a key to unlock the door
        self.add_object(0, 0, 'key', door.color)
        # self.add_object(1, 0, 'key', door.color)

        self.place_agent(0, 0)

        self.door = door

        # Add balls
        self.add_object(0, 0, 'ball', door.color)
        self.add_object(1, 0, 'ball', 'red')
        # self.add_object(0, 0, 'ball', 'red')
        # self.add_object(1, 0, 'ball', 'blue')
        # self.mission = "open the door"

        # Add boxes
        self.add_object(0, 0, 'box', door.color)
        self.add_object(1, 0, 'box', 'red')
        # self.add_object(0, 0, 'box', 'red')
        # self.add_object(1, 0, 'box', 'blue')

        # Add lava
        self.grid.vert_wall(4, 3, height - 6, Lava)
        self.grid.horz_wall(9, 2, height - 6, Lava)
        # self.grid.horz_wall(4, width - 3, 3, Lava)

        # Place a goal in the bottom-right corner
        self.put_obj(Goal(), width - 2, height - 2)
Example #6
0
    def _gen_grid(self, width, height, val=False, seen=True):

        # Create the grid
        self.grid = Grid(width, height)

        # Generate surrounding walls
        self.grid.horz_wall(0, 0)
        self.grid.horz_wall(0, height - 1)
        self.grid.vert_wall(0, 0)
        self.grid.vert_wall(width - 1, 0)

        # Even during validation, start state distribution
        # should be the same as that during training
        if not self.rnd_start:
            self._agent_default_pos = (1, self.grid_size - 2)
        else:
            self._agent_default_pos = None

        # Place the agent at the center
        if self._agent_default_pos is not None:
            self.start_pos = self._agent_default_pos
            self.grid.set(*self._agent_default_pos, None)
            self.start_dir = self._rand_int(
                0, 4)  # Agent direction doesn't matter

        goal = Goal()
        self.grid.set(*self._goal_default_pos, goal)

        goal.init_pos = goal.curr_pos = self._goal_default_pos

        self.mission = goal.init_pos
Example #7
0
    def _gen_grid(self, width, height, val=False, seen=True):

        assert width >= 10 and height >= 10, "Environment too small to place objects"
        # Create the grid
        self.grid = Grid(width, height)

        # Generate surrounding walls
        self.grid.horz_wall(0, 0)
        self.grid.horz_wall(0, height - 1)
        self.grid.vert_wall(0, 0)
        self.grid.vert_wall(width - 1, 0)

        np.random.seed(self.grid_seed)

        for obj_idx in range(self.num_objects):

            while True:
                c_x, c_y = np.random.choice(list(range(
                    2, self.grid_size - 3))), np.random.choice(
                        list(range(2, self.grid_size - 3)))

                #obj_size = np.random.choice(list(range(1, self.obj_size+1)))
                obj_size = self.obj_size

                if obj_size == 3:
                    cells = list(
                        product([c_x - 1, c_x, c_x + 1],
                                [c_y - 1, c_y, c_y + 1]))
                elif obj_size == 2:
                    cells = list(product([c_x, c_x + 1], [c_y, c_y + 1]))
                elif obj_size == 1:
                    cells = list(product([c_x], [c_y]))
                else:
                    raise ValueError

                valid = True
                for cell in cells:
                    cell = self.grid.get(cell[0], cell[1])

                    if not (cell is None or cell.can_overlap()):
                        valid = False
                        break

                if valid:
                    for cell in cells:
                        self.grid.set(*cell, Wall())
                    break

        # Set the start position and the goal position depending upon where the obstacles are present
        goal = Goal()
        # [NOTE] : This is a hack, add option to set goal location from arguments.

        self.grid.set(*self._goal_default_pos, goal)
        goal.init_pos = goal.curr_pos = self._goal_default_pos

        self.mission = goal.init_pos

        self.start_pos = self._agent_default_pos
Example #8
0
    def _gen_grid(self, width, height):
        # Create empty grid
        self.grid = Grid(width, height)
        self.grid.wall_rect(0, 0, width, height)

        # Agent starts in the center
        self.start_pos = (width // 2, height // 2)
        self.start_dir = 0

        # Goal is anywhere but the center
        self.place_obj(Goal())

        # Set mission string
        self.mission = "GO TO GREEN SQUARE"
Example #9
0
    def decode(array):
        """
        Decode an array grid encoding back into a grid
        """

        width, height, channels = array.shape
        assert channels == 3

        grid = Grid(width, height)
        for i in range(width):
            for j in range(height):
                typeIdx, colorIdx, state = array[i, j]

                if typeIdx == OBJECT_TO_IDX['unseen'] or \
                        typeIdx == OBJECT_TO_IDX['empty']:
                    continue

                objType = IDX_TO_OBJECT[typeIdx]
                color = IDX_TO_COLOR[colorIdx]
                # State, 0: open, 1: closed, 2: locked
                is_open = state == 0
                is_locked = state == 2

                if objType == 'wall':
                    v = Wall(color)
                elif objType == 'floor':
                    v = Floor(color)
                elif objType == 'ball':
                    v = Ball(color)
                elif objType == 'key':
                    v = Key(color)
                elif objType == 'box':
                    v = Box(color)
                elif objType == 'door':
                    v = Door(color, is_open, is_locked)
                elif objType == 'goal':
                    v = Goal()
                elif objType == 'lava':
                    v = Lava()
                elif objType == 'agent':
                    v = None
                else:
                    assert False, "unknown obj type in decode '%s'" % objType

                grid.set(i, j, v)

        return grid
Example #10
0
    def _make_hallways(self):
        """ Creates a sub-room with two hallways and defines one of them
        to be the goal for the option within the room """

        hallways = {
            'topleft->topright': ((9, 4), (3, 9)),
            'topleft->botleft': ((3, 9), (9, 4)),
            'topright->topleft': ((0, 4), (7, 9)),
            'topright->botright': ((7, 9), (0, 4)),
            'botleft->topleft': ((3, 0), (9, 5)),
            'botleft->botright': ((9, 5), (3, 0)),
            'botright->topright': ((7, 0), (0, 5)),
            'botright->botleft': ((0, 5), (7, 0)),
        }
        goal, other_hall = hallways[self.option_name]
        self.env.grid.set(*goal, Goal())
        self.env.grid.set(*other_hall, Wall())
Example #11
0
    def _add_reward(self):
        """Add reward in final room."""

        i, j = self.lattice.end

        xL = i * self.room_w + i
        yB = j * self.room_h + j
        xR = xL + self.room_w + 1
        yT = yB + self.room_h + 1

        if self.verbose:
            print('Adding reward in room ({},{})'.format(i,j))
            print('Choosing tile in square [{},{}] X [{},{}]'.format(xL+2, xR, yB+2, yT))

        x = random.choice(range(xL+2, xR-1))
        y = random.choice(range(yB+2, yT-1))

        self.set(x, y, Goal())
Example #12
0
    def _gen_grid(self, width: int, height: int) -> None:
        """Generate grid space.

        Jobs:
            - create grid world
            - create wall
            - set starting point
            - set goal
            - set lava
        """
        assert width >= 5 and height >= 5

        # Current position and direction of the agent
        self.agent_pos: Tuple[int, int] = (1, 1)  # (0,0) is wall
        self.agent_dir: int = 0

        # Create an empty grid
        self.grid = Grid(width, height)

        # Create wall
        self.grid.wall_rect(0, 0, width, height)

        # Create Goal
        for position in self.goal_pos:
            goal_with_wall = self.__adjust_pos_consider_walls(position)
            self.__set_grid_type(*goal_with_wall, Goal())

        # Create Lava
        if self.obstacle_pos:
            for lava_pos in self.obstacle_pos:
                lava_with_wall = self.__adjust_pos_consider_walls(lava_pos)
                self.__set_grid_type(*lava_with_wall, self.obstacle_type())

        # Settings for reward_grid
        for cell in itertools.product(
            range(self.valid_height), range(self.valid_width)
        ):
            if cell in self.goal_pos:
                self.reward_grid[cell] = self.goal_reward
            elif cell in self.obstacle_pos:
                self.reward_grid[cell] = self.obstacle_reward
            else:
                self.reward_grid[cell] = self.default_reward
Example #13
0
    def _gen_grid(self, width, height):
        # Create an empty grid
        self.grid = Grid(width, height)

        # Generate the surrounding walls
        self.grid.wall_rect(0, 0, width, height)

        # Place the goals
        for _ in range(self.n_goals):
            self.place_obj(Goal())

        # Place the traps
        for _ in range(self.n_traps):
            self.place_obj(Lava())

        # Place the agent
        if self.agent_start_pos is not None:
            self.agent_pos = self.agent_start_pos
            self.agent_dir = self.agent_start_dir
        else:
            self.place_agent()

        self.mission = "get to the green goal square, avoid the lava"
Example #14
0
    def _gen_grid(self, width, height, val=False, seen=True):

        # Create the grid
        self.grid = Grid(width, height)

        # Generate surrounding walls
        self.grid.horz_wall(0, 0)
        self.grid.horz_wall(0, height - 1)
        self.grid.vert_wall(0, 0)
        self.grid.vert_wall(width - 1, 0)

        # Place horizontal walls through the grid
        self.grid.horz_wall(0, height // 3)
        self.grid.horz_wall(0, (2 * height) // 3)

        # Place vertical walls through the grid
        self.grid.vert_wall(width // 3, 0)
        self.grid.vert_wall((2 * width) // 3, 0)

        # Create passages
        passage_anchors = [(width // 3, height // 3),
                           (width // 3, (2 * height) // 3),
                           ((2 * width) // 3, height // 3),
                           ((2 * width) // 3, (2 * height) // 3)]
        passage_cells = []
        for anchor in passage_anchors:
            for delta in range(-1 * self.passage_size, self.passage_size + 1):
                passage_cells.append((anchor[0] + delta, anchor[1]))
                passage_cells.append((anchor[0], anchor[1] + delta))

        for cell in passage_cells:
            self.grid.set(*cell, None)

        # Even during validation, start state distribution
        # should be the same as that during training
        if not self.rnd_start:
            self._agent_default_pos = ((width - 2) // 2, (height - 2) // 2)
        else:
            self._agent_default_pos = None

        # Place the agent at the center
        if self._agent_default_pos is not None:
            self.start_pos = self._agent_default_pos
            self.grid.set(*self._agent_default_pos, None)
            self.start_dir = self._rand_int(
                0, 4)  # Agent direction doesn't matter
        else:

            if len(self.start_state_exclude_rooms) == 0:
                self.place_agent()
            else:
                valid_start_pos = []
                if seen:
                    exclude_from = self.start_state_exclude_rooms
                else:
                    exclude_from = [
                        x for x in range(1, 10)
                        if x not in self.start_state_exclude_rooms
                    ]
                for room in range(1, 10):
                    if room in exclude_from:
                        continue
                    # Ignore that there are walls for now, can handle that with rejection sampling

                    # Get x coordinates of allowed cells
                    valid_x = []
                    if room % 3 == 1:
                        valid_x = list(range(1, width // 3))
                    elif room % 3 == 2:
                        valid_x = list(range(width // 3 + 1, (2 * width) // 3))
                    else:
                        valid_x = list(range((2 * width) // 3 + 1, width - 1))

                    # Get valid y-coordinates of allowed cells
                    valid_y = []
                    if (room - 1) // 3 == 0:
                        valid_y = list(range(1, height // 3))
                    elif (room - 1) // 3 == 1:
                        valid_y = list(
                            range(height // 3 + 1, (2 * height) // 3))
                    else:
                        valid_y = list(range((2 * height) // 3 + 1,
                                             height - 1))

                    room_cells = list(product(valid_x, valid_y))

                    valid_start_pos += room_cells

                # Make sure start position doesn't conflict with other cells
                while True:

                    _start_pos = valid_start_pos[np.random.choice(
                        len(valid_start_pos))]
                    row = _start_pos[1]
                    col = _start_pos[0]
                    cell = self.grid.get(row, col)

                    if cell is None or cell.can_overlap():
                        break

                self.start_pos = (col, row)
                self.start_dir = self._rand_int(
                    0, 4)  # Agent direction doesn't matter

        goal = Goal()
        self.grid.set(*self._goal_default_pos, goal)
        goal.init_pos = goal.curr_pos = self._goal_default_pos

        self.mission = goal.init_pos
Example #15
0
 def spawn_new_food(self):
     empties = [(i, j) for i in range(self.grid.height)
                for j in range(self.grid.width)
                if self.grid.get(i, j) is None
                and self.grid.get(i, j) != tuple(self.agent_pos)]
     self.grid.set(*random.choice(empties), Goal())