calories = [656, 658, 768, 836] # 入力画像をNumpyに変換 --- (※2) X = [] files = [] for fname in sys.argv[1:]: img = Image.open(fname) img = img.convert("RGB") img = img.resize((image_size, image_size)) in_data = np.asarray(img) X.append(in_data) files.append(fname) X = np.array(X) # CNNのモデルを構築 --- (※3) model = gyudon.build_model(X.shape[1:]) model.load_weights("./image/gyudon-model.hdf5") # データを予測 --- (※4) html = "" pre = model.predict(X) for i, p in enumerate(pre): y = p.argmax() print("+ 入力:", files[i]) print("| 牛丼名:", categories[y]) print("| カロリー:", calories[y]) html += """ <h3>入力:{0}</h3> <div> <p><img src="{1}" width=300></p> <p>牛丼名:{2}</p>
calories = [656, 658, 768, 836] # 입력 이미지를 Numpy로 변환하기 --- (※2) X = [] files = [] for fname in sys.argv[1:]: img = Image.open(fname) img = img.convert("RGB") img = img.resize((image_size, image_size)) in_data = np.asarray(img) X.append(in_data) files.append(fname) X = np.array(X) # CNN 모델 구축하기 --- (※3) model = gyudon.build_model(X.shape[1:]) model.load_weights("./image/gyudon-model.hdf5") # 데이터 예측하기 --- (※4) html = "" pre = model.predict(X) for i, p in enumerate(pre): y = p.argmax() print("+입력:", files[i]) print("|규동 이름:", categories[y]) print("|칼로리:", calories[y]) html += """ <h3>입력:{0}</h3> <div> <p><img src="{1}" width=300></p> <p>규동 이름:{2}</p> <p>칼로리 :{3}kcal</p>