def test_train_val_absent(self): """Test if an error is raised when the either the train or val baobab config is not passed in """ train_val_dict = copy.deepcopy(self.train_val_dict) train_val_dict['data']['val_baobab_cfg_path'] = 'some_path' with np.testing.assert_raises(ValueError): train_val_cfg = TrainValConfig(train_val_dict) train_val_dict = copy.deepcopy(self.train_val_dict) train_val_dict['data']['train_baobab_cfg_path'] = 'some_path' with np.testing.assert_raises(ValueError): train_val_cfg = TrainValConfig(train_val_dict)
def test_train_val_config_constructor(self): """Test the instantiation of TrainValConfig from a dictionary with minimum required keys """ train_val_dict = copy.deepcopy(self.train_val_dict) train_val_dict['data']['train_baobab_cfg_path'] = 'some_path' train_val_dict['data']['val_baobab_cfg_path'] = 'some_other_path' train_val_cfg = TrainValConfig(train_val_dict)
def main(): args = script_utils.parse_inference_args() test_cfg = TestConfig.from_file(args.test_config_file_path) baobab_cfg = BaobabConfig.from_file(test_cfg.data.test_baobab_cfg_path) cfg = TrainValConfig.from_file(test_cfg.train_val_config_file_path) # Set device and default data type device = torch.device(test_cfg.device_type) if device.type == 'cuda': torch.set_default_tensor_type('torch.cuda.FloatTensor') else: torch.set_default_tensor_type('torch.FloatTensor') script_utils.seed_everything(test_cfg.global_seed) ############ # Data I/O # ############ train_data = XYData(is_train=True, Y_cols=cfg.data.Y_cols, float_type=cfg.data.float_type, define_src_pos_wrt_lens=cfg.data.define_src_pos_wrt_lens, rescale_pixels=cfg.data.rescale_pixels, log_pixels=cfg.data.log_pixels, add_pixel_noise=cfg.data.add_pixel_noise, eff_exposure_time=cfg.data.eff_exposure_time, train_Y_mean=None, train_Y_std=None, train_baobab_cfg_path=cfg.data.train_baobab_cfg_path, val_baobab_cfg_path=test_cfg.data.test_baobab_cfg_path, for_cosmology=False) # Define val data and loader test_data = XYData(is_train=False, Y_cols=cfg.data.Y_cols, float_type=cfg.data.float_type, define_src_pos_wrt_lens=cfg.data.define_src_pos_wrt_lens, rescale_pixels=cfg.data.rescale_pixels, log_pixels=cfg.data.log_pixels, add_pixel_noise=cfg.data.add_pixel_noise, eff_exposure_time=cfg.data.eff_exposure_time, train_Y_mean=train_data.train_Y_mean, train_Y_std=train_data.train_Y_std, train_baobab_cfg_path=cfg.data.train_baobab_cfg_path, val_baobab_cfg_path=test_cfg.data.test_baobab_cfg_path, for_cosmology=True) cosmo_df = test_data.Y_df if test_cfg.data.lens_indices is None: n_test = test_cfg.data.n_test # number of lenses in the test set lens_range = range(n_test) else: # if specific lenses are specified lens_range = test_cfg.data.lens_indices n_test = len(lens_range) print("Performing H0 inference on {:d} specified lenses...".format(n_test)) batch_size = max(lens_range) + 1 test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=False, drop_last=True) # Output directory into which the H0 histograms and H0 samples will be saved out_dir = test_cfg.out_dir if not os.path.exists(out_dir): os.makedirs(out_dir) print("Destination folder path: {:s}".format(out_dir)) else: raise OSError("Destination folder already exists.") ###################### # Load trained state # ###################### # Instantiate loss function loss_fn = getattr(h0rton.losses, cfg.model.likelihood_class)(Y_dim=train_data.Y_dim, device=device) # Instantiate posterior (for logging) bnn_post = getattr(h0rton.h0_inference.gaussian_bnn_posterior, loss_fn.posterior_name)(train_data.Y_dim, device, train_data.train_Y_mean, train_data.train_Y_std) with torch.no_grad(): # TODO: skip this if lens_posterior_type == 'truth' for X_, Y_ in test_loader: X = X_.to(device) Y = Y_.to(device) break # Export the input images X for later error analysis if test_cfg.export.images: for lens_i in range(n_test): X_img_path = os.path.join(out_dir, 'X_{0:04d}.npy'.format(lens_i)) np.save(X_img_path, X[lens_i, 0, :, :].cpu().numpy()) ################ # H0 Posterior # ################ h0_prior = getattr(stats, test_cfg.h0_prior.dist)(**test_cfg.h0_prior.kwargs) kappa_ext_prior = getattr(stats, test_cfg.kappa_ext_prior.dist)(**test_cfg.kappa_ext_prior.kwargs) aniso_param_prior = getattr(stats, test_cfg.aniso_param_prior.dist)(**test_cfg.aniso_param_prior.kwargs) # FIXME: hardcoded kwargs_model = dict( lens_model_list=['PEMD', 'SHEAR'], lens_light_model_list=['SERSIC_ELLIPSE'], source_light_model_list=['SERSIC_ELLIPSE'], point_source_model_list=['SOURCE_POSITION'], cosmo=FlatLambdaCDM(H0=70.0, Om0=0.3) #'point_source_model_list' : ['LENSED_POSITION'] ) h0_post = H0Posterior( H0_prior=h0_prior, kappa_ext_prior=kappa_ext_prior, aniso_param_prior=aniso_param_prior, exclude_vel_disp=test_cfg.h0_posterior.exclude_velocity_dispersion, kwargs_model=kwargs_model, baobab_time_delays=test_cfg.time_delay_likelihood.baobab_time_delays, kinematics=baobab_cfg.bnn_omega.kinematics, kappa_transformed=test_cfg.kappa_ext_prior.transformed, Om0=baobab_cfg.bnn_omega.cosmology.Om0, define_src_pos_wrt_lens=cfg.data.define_src_pos_wrt_lens, kwargs_lens_eqn_solver={'min_distance': 0.05, 'search_window': baobab_cfg.instrument['pixel_scale']*baobab_cfg.image['num_pix'], 'num_iter_max': 100} ) # Get H0 samples for each system if not test_cfg.time_delay_likelihood.baobab_time_delays: if 'abcd_ordering_i' not in cosmo_df: raise ValueError("If the time delay measurements were not generated using Baobab, the user must specify the order of image positions in which the time delays are listed, in order of increasing dec.") required_params = h0_post.required_params ######################## # Lens Model Posterior # ######################## n_samples = test_cfg.h0_posterior.n_samples # number of h0 samples per lens sampling_buffer = test_cfg.h0_posterior.sampling_buffer # FIXME: dynamically sample more if we run out of samples actual_n_samples = int(n_samples*sampling_buffer) # Add artificial noise around the truth values Y_orig = bnn_post.transform_back_mu(Y).cpu().numpy().reshape(batch_size, test_data.Y_dim) Y_orig_df = pd.DataFrame(Y_orig, columns=cfg.data.Y_cols) Y_orig_values = Y_orig_df[required_params].values[:, np.newaxis, :] # [n_test, 1, Y_dim] artificial_noise = np.random.randn(batch_size, actual_n_samples, test_data.Y_dim)*Y_orig_values*test_cfg.fractional_error_added_to_truth # [n_test, buffer*n_samples, Y_dim] lens_model_samples_values = Y_orig_values + artificial_noise # [n_test, buffer*n_samples, Y_dim] # Placeholders for mean and std of H0 samples per system mean_h0_set = np.zeros(n_test) std_h0_set = np.zeros(n_test) inference_time_set = np.zeros(n_test) # For each lens system... total_progress = tqdm(total=n_test) sampling_progress = tqdm(total=n_samples) prerealized_time_delays = test_cfg.error_model.prerealized_time_delays if prerealized_time_delays: realized_time_delays = pd.read_csv(test_cfg.error_model.realized_time_delays_path, index_col=None) else: realized_time_delays = pd.DataFrame() realized_time_delays['measured_td_wrt0'] = [[]]*len(lens_range) for i, lens_i in enumerate(lens_range): lens_i_start_time = time.time() # Each lens gets a unique random state for td and vd measurement error realizations. rs_lens = np.random.RandomState(lens_i) # BNN samples for lens_i bnn_sample_df = pd.DataFrame(lens_model_samples_values[lens_i, :, :], columns=required_params) # Cosmology observables for lens_i cosmo = cosmo_df.iloc[lens_i] true_td = np.array(literal_eval(cosmo['true_td'])) true_img_dec = np.array(literal_eval(cosmo['y_image'])) true_img_ra = np.array(literal_eval(cosmo['x_image'])) increasing_dec_i = np.argsort(true_img_dec) true_img_dec = true_img_dec[increasing_dec_i] true_img_ra = true_img_ra[increasing_dec_i] measured_vd = cosmo['true_vd']*(1.0 + rs_lens.randn()*test_cfg.error_model.velocity_dispersion_frac_error) if prerealized_time_delays: measured_td_wrt0 = np.array(literal_eval(realized_time_delays.iloc[lens_i]['measured_td_wrt0'])) else: true_td = true_td[increasing_dec_i] true_td = true_td[1:] - true_td[0] measured_td_wrt0 = true_td + rs_lens.randn(*true_td.shape)*test_cfg.error_model.time_delay_error # [n_img -1,] realized_time_delays.at[lens_i, 'measured_td_wrt0'] = list(measured_td_wrt0) #print("True: ", true_td) #print("True img: ", true_img_dec) #print("measured td: ", measured_td_wrt0) h0_post.set_cosmology_observables( z_lens=cosmo['z_lens'], z_src=cosmo['z_src'], measured_vd=measured_vd, measured_vd_err=test_cfg.velocity_dispersion_likelihood.sigma, measured_td_wrt0=measured_td_wrt0, measured_td_err=test_cfg.time_delay_likelihood.sigma, abcd_ordering_i=np.arange(len(true_td) + 1), true_img_dec=true_img_dec, true_img_ra=true_img_ra, kappa_ext=cosmo['kappa_ext'], # not necessary ) h0_post.set_truth_lens_model(sampled_lens_model_raw=bnn_sample_df.iloc[0]) # Initialize output array h0_samples = np.full(n_samples, np.nan) h0_weights = np.zeros(n_samples) # For each sample from the lens model posterior of this lens system... sampling_progress.reset() valid_sample_i = 0 sample_i = 0 while valid_sample_i < n_samples: if sample_i > actual_n_samples - 1: break #try: # Each sample for a given lens gets a unique random state for H0, k_ext, and aniso_param realizations. rs_sample = np.random.RandomState(int(str(lens_i) + str(sample_i).zfill(5))) h0, weight = h0_post.get_h0_sample_truth(rs_sample) h0_samples[valid_sample_i] = h0 h0_weights[valid_sample_i] = weight sampling_progress.update(1) time.sleep(0.001) valid_sample_i += 1 sample_i += 1 #except: # sample_i += 1 # continue sampling_progress.refresh() lens_i_end_time = time.time() inference_time = (lens_i_end_time - lens_i_start_time)/60.0 # min h0_dict = dict( h0_samples=h0_samples, h0_weights=h0_weights, n_sampling_attempts=sample_i, measured_td_wrt0=measured_td_wrt0, inference_time=inference_time ) h0_dict_save_path = os.path.join(out_dir, 'h0_dict_{0:04d}.npy'.format(lens_i)) np.save(h0_dict_save_path, h0_dict) h0_stats = plot_weighted_h0_histogram(h0_samples, h0_weights, lens_i, cosmo['H0'], include_fit_gaussian=test_cfg.plotting.include_fit_gaussian, save_dir=out_dir) mean_h0_set[i] = h0_stats['mean'] std_h0_set[i] = h0_stats['std'] inference_time_set[i] = inference_time total_progress.update(1) total_progress.close() if not prerealized_time_delays: realized_time_delays.to_csv(os.path.join(out_dir, 'realized_time_delays.csv'), index=None) h0_stats = dict( mean=mean_h0_set, std=std_h0_set, inference_time=inference_time_set, ) h0_stats_save_path = os.path.join(out_dir, 'h0_stats') np.save(h0_stats_save_path, h0_stats)
def main(): args = parse_args() test_cfg = TestConfig.from_file(args.test_config_file_path) train_val_cfg = TrainValConfig.from_file(test_cfg.train_val_config_file_path) baobab_cfg = get_baobab_config(test_cfg.data.test_dir) # Set device and default data type device = torch.device(test_cfg.device_type) if device.type == 'cuda': torch.set_default_tensor_type('torch.cuda.FloatTensor') else: torch.set_default_tensor_type('torch.FloatTensor') seed_everything(test_cfg.global_seed) ############ # Data I/O # ############ test_data = XYCosmoData(test_cfg.data.test_dir, data_cfg=train_val_cfg.data) master_truth = test_data.cosmo_df master_truth = metadata_utils.add_qphi_columns(master_truth) master_truth = metadata_utils.add_gamma_psi_ext_columns(master_truth) if test_cfg.data.lens_indices is None: if args.lens_indices_path is None: # Test on all n_test lenses in the test set n_test = test_cfg.data.n_test lens_range = range(n_test) else: # Test on the lens indices in a text file at the specified path lens_range = [] with open(args.lens_indices_path, "r") as f: for line in f: lens_range.append(int(line.strip())) n_test = len(lens_range) print("Performing H0 inference on {:d} specified lenses...".format(n_test)) else: if args.lens_indices_path is None: # Test on the lens indices specified in the test config file lens_range = test_cfg.data.lens_indices n_test = len(lens_range) print("Performing H0 inference on {:d} specified lenses...".format(n_test)) else: raise ValueError("Specific lens indices were specified in both the test config file and the command-line argument.") batch_size = max(lens_range) + 1 # Output directory into which the H0 histograms and H0 samples will be saved out_dir = test_cfg.out_dir if not os.path.exists(out_dir): os.makedirs(out_dir) print("Destination folder path: {:s}".format(out_dir)) else: raise OSError("Destination folder already exists.") ###################### # Load trained state # ###################### # Instantiate loss function, to append to the MCMC objective as the prior orig_Y_cols = train_val_cfg.data.Y_cols # Instantiate MCMC parameter penalty function params_to_remove = ['lens_light_R_sersic'] #'src_light_R_sersic'] mcmc_Y_cols = [col for col in orig_Y_cols if col not in params_to_remove] mcmc_Y_dim = len(mcmc_Y_cols) null_spread = True #init_D_dt = np.random.uniform(0.0, 10000.0, size=(batch_size, n_walkers, 1)) # FIXME: init H0 hardcoded kwargs_model = dict(lens_model_list=['PEMD', 'SHEAR'], point_source_model_list=['SOURCE_POSITION'], source_light_model_list=['SERSIC_ELLIPSE']) astro_sig = test_cfg.image_position_likelihood.sigma # Get H0 samples for each system if not test_cfg.time_delay_likelihood.baobab_time_delays: if 'abcd_ordering_i' not in master_truth: raise ValueError("If the time delay measurements were not generated using Baobab, the user must specify the order of image positions in which the time delays are listed, in order of increasing dec.") kwargs_lens_eq_solver = {'min_distance': 0.05, 'search_window': baobab_cfg.instrument.pixel_scale*baobab_cfg.image.num_pix, 'num_iter_max': 100} #n_walkers = test_cfg.numerics.mcmc.walkerRatio*(mcmc_Y_dim + 1) # BNN params + H0 times walker ratio #init_pos = np.tile(master_truth[mcmc_Y_cols].iloc[:batch_size].values[:, np.newaxis, :], [1, n_walkers, 1]) #init_D_dt = np.random.uniform(0.0, 10000.0, size=(batch_size, n_walkers, 1)) #print(init_pos.shape, init_D_dt.shape) total_progress = tqdm(total=n_test) # For each lens system... for i, lens_i in enumerate(lens_range): # Each lens gets a unique random state for td and vd measurement error realizations. rs_lens = np.random.RandomState(lens_i) ########################### # Relevant data and prior # ########################### data_i = master_truth.iloc[lens_i].copy() # Init values for the lens model params init_info = dict(zip(mcmc_Y_cols, data_i[mcmc_Y_cols].values)) # truth params lcdm = LCDM(z_lens=data_i['z_lens'], z_source=data_i['z_src'], flat=True) true_img_dec = np.array(literal_eval(data_i['y_image'])) n_img = len(true_img_dec) true_td = np.array(literal_eval(data_i['true_td'])) measured_td = true_td + rs_lens.randn(*true_td.shape)*test_cfg.error_model.time_delay_error measured_td_sig = test_cfg.time_delay_likelihood.sigma # np.ones(n_img - 1)* measured_img_dec = true_img_dec + rs_lens.randn(n_img)*astro_sig increasing_dec_i = np.argsort(true_img_dec) #np.argsort(measured_img_dec) measured_td = h0_utils.reorder_to_tdlmc(measured_td, increasing_dec_i, range(n_img)) # need to use measured dec to order measured_img_dec = h0_utils.reorder_to_tdlmc(measured_img_dec, increasing_dec_i, range(n_img)) measured_td_wrt0 = measured_td[1:] - measured_td[0] kwargs_data_joint = dict(time_delays_measured=measured_td_wrt0, time_delays_uncertainties=measured_td_sig, ) ############################# # Parameter init and bounds # ############################# lens_kwargs = mcmc_utils.get_lens_kwargs(init_info, null_spread=null_spread) ps_kwargs = mcmc_utils.get_ps_kwargs_src_plane(init_info, astro_sig, null_spread=null_spread) src_light_kwargs = mcmc_utils.get_light_kwargs(init_info['src_light_R_sersic'], null_spread=null_spread) special_kwargs = mcmc_utils.get_special_kwargs(n_img, astro_sig, D_dt_sigma=2000, null_spread=null_spread) # image position offset and time delay distance, aka the "special" parameters kwargs_params = {'lens_model': lens_kwargs, 'point_source_model': ps_kwargs, 'source_model': src_light_kwargs, 'special': special_kwargs,} if test_cfg.numerics.solver_type == 'NONE': solver_type = 'NONE' else: solver_type = 'PROFILE_SHEAR' if n_img == 4 else 'CENTER' #solver_type = 'NONE' kwargs_constraints = {'num_point_source_list': [n_img], 'Ddt_sampling': True, 'solver_type': solver_type,} kwargs_likelihood = {'time_delay_likelihood': True, 'sort_images_by_dec': True, 'prior_lens': [], 'prior_special': [], 'check_bounds': True, 'check_matched_source_position': False, 'source_position_tolerance': 0.01, 'source_position_sigma': 0.01, 'source_position_likelihood': False, 'custom_logL_addition': None, 'kwargs_lens_eq_solver': kwargs_lens_eq_solver} ########################### # MCMC posterior sampling # ########################### fitting_seq = FittingSequence(kwargs_data_joint, kwargs_model, kwargs_constraints, kwargs_likelihood, kwargs_params, verbose=False, mpi=False) if i == 0: param_class = fitting_seq._updateManager.param_class n_params, param_class_Y_cols = param_class.num_param() #init_pos = mcmc_utils.reorder_to_param_class(mcmc_Y_cols, param_class_Y_cols, init_pos, init_D_dt) # MCMC sample from the post-processed BNN posterior jointly with cosmology lens_i_start_time = time.time() #test_cfg.numerics.mcmc.update(init_samples=init_pos[lens_i, :, :]) fitting_kwargs_list_mcmc = [['MCMC', test_cfg.numerics.mcmc]] #with HiddenPrints(): #try: chain_list_mcmc = fitting_seq.fit_sequence(fitting_kwargs_list_mcmc) kwargs_result_mcmc = fitting_seq.best_fit() #except: # print("lens {:d} skipped".format(lens_i)) # total_progress.update(1) # continue lens_i_end_time = time.time() inference_time = (lens_i_end_time - lens_i_start_time)/60.0 # min ############################# # Plotting the MCMC samples # ############################# # sampler_type : 'EMCEE' # samples_mcmc : np.array of shape `[n_mcmc_eval, n_params]` # param_mcmc : list of str of length n_params, the parameter names sampler_type, samples_mcmc, param_mcmc, _ = chain_list_mcmc[0] new_samples_mcmc = mcmc_utils.postprocess_mcmc_chain(kwargs_result_mcmc, samples_mcmc, kwargs_model, lens_kwargs[2], ps_kwargs[2], src_light_kwargs[2], special_kwargs[2], kwargs_constraints) # Plot D_dt histogram D_dt_samples = new_samples_mcmc['D_dt'].values true_D_dt = lcdm.D_dt(H_0=data_i['H0'], Om0=0.3) data_i['D_dt'] = true_D_dt # Export D_dt samples for this lens lens_inference_dict = dict( D_dt_samples=D_dt_samples, # kappa_ext=0 for these samples inference_time=inference_time, true_D_dt=true_D_dt, ) lens_inference_dict_save_path = os.path.join(out_dir, 'D_dt_dict_{0:04d}.npy'.format(lens_i)) np.save(lens_inference_dict_save_path, lens_inference_dict) # Optionally export the MCMC samples if test_cfg.export.mcmc_samples: mcmc_samples_path = os.path.join(out_dir, 'mcmc_samples_{0:04d}.csv'.format(lens_i)) new_samples_mcmc.to_csv(mcmc_samples_path, index=None) # Optionally export the D_dt histogram if test_cfg.export.D_dt_histogram: cleaned_D_dt_samples = h0_utils.remove_outliers_from_lognormal(D_dt_samples, 3) _ = plotting_utils.plot_D_dt_histogram(cleaned_D_dt_samples, lens_i, true_D_dt, save_dir=out_dir) # Optionally export the plot of MCMC chain if test_cfg.export.mcmc_chain: mcmc_chain_path = os.path.join(out_dir, 'mcmc_chain_{0:04d}.png'.format(lens_i)) plotting_utils.plot_mcmc_chain(chain_list_mcmc, mcmc_chain_path) # Optionally export posterior cornerplot of select lens model parameters with D_dt if test_cfg.export.mcmc_corner: mcmc_corner_path = os.path.join(out_dir, 'mcmc_corner_{0:04d}.png'.format(lens_i)) plotting_utils.plot_mcmc_corner(new_samples_mcmc[test_cfg.export.mcmc_cols], data_i[test_cfg.export.mcmc_cols], test_cfg.export.mcmc_col_labels, mcmc_corner_path) total_progress.update(1) gc.collect() total_progress.close()
def main(): args = parse_args() test_cfg = TestConfig.from_file(args.test_config_file_path) train_val_cfg = TrainValConfig.from_file( test_cfg.train_val_config_file_path) # Set device and default data type device = torch.device(test_cfg.device_type) if device.type == 'cuda': torch.set_default_tensor_type('torch.cuda.FloatTensor') else: torch.set_default_tensor_type('torch.FloatTensor') seed_everything(test_cfg.global_seed) ############ # Data I/O # ############ test_data = TDLMCData(data_cfg=train_val_cfg.data, rung_i=args.rung_idx) master_truth = test_data.cosmo_df if test_cfg.data.lens_indices is None: if args.lens_indices_path is None: # Test on all n_test lenses in the test set n_test = test_cfg.data.n_test lens_range = range(n_test) else: # Test on the lens indices in a text file at the specified path lens_range = [] with open(args.lens_indices_path, "r") as f: for line in f: lens_range.append(int(line.strip())) n_test = len(lens_range) print("Performing H0 inference on {:d} specified lenses...".format( n_test)) else: if args.lens_indices_path is None: # Test on the lens indices specified in the test config file lens_range = test_cfg.data.lens_indices n_test = len(lens_range) print("Performing H0 inference on {:d} specified lenses...".format( n_test)) else: raise ValueError( "Specific lens indices were specified in both the test config file and the command-line argument." ) batch_size = max(lens_range) + 1 test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=False, drop_last=True) # Output directory into which the H0 histograms and H0 samples will be saved out_dir = test_cfg.out_dir if not os.path.exists(out_dir): os.makedirs(out_dir) print("Destination folder path: {:s}".format(out_dir)) else: raise OSError("Destination folder already exists.") ###################### # Load trained state # ###################### # Instantiate loss function, to append to the MCMC objective as the prior orig_Y_cols = train_val_cfg.data.Y_cols loss_fn = getattr(h0rton.losses, train_val_cfg.model.likelihood_class)( Y_dim=train_val_cfg.data.Y_dim, device=device) # Instantiate MCMC parameter penalty function params_to_remove = ['lens_light_R_sersic'] #, 'src_light_R_sersic'] mcmc_Y_cols = [col for col in orig_Y_cols if col not in params_to_remove] mcmc_Y_dim = len(mcmc_Y_cols) mcmc_loss_fn = getattr( h0rton.losses, train_val_cfg.model.likelihood_class)( Y_dim=train_val_cfg.data.Y_dim - len(params_to_remove), device=device) remove_param_idx, remove_idx = mcmc_utils.get_idx_for_params( mcmc_loss_fn.out_dim, orig_Y_cols, params_to_remove, train_val_cfg.model.likelihood_class) mcmc_train_Y_mean = np.delete(train_val_cfg.data.train_Y_mean, remove_param_idx) mcmc_train_Y_std = np.delete(train_val_cfg.data.train_Y_std, remove_param_idx) parameter_penalty = mcmc_utils.HybridBNNPenalty( mcmc_Y_cols, train_val_cfg.model.likelihood_class, mcmc_train_Y_mean, mcmc_train_Y_std, test_cfg.h0_posterior.exclude_velocity_dispersion, device) custom_logL_addition = parameter_penalty.evaluate if test_cfg.lens_posterior_type.startswith( 'default') else None null_spread = True if test_cfg.lens_posterior_type == 'truth' else False # Instantiate model net = getattr( h0rton.models, train_val_cfg.model.architecture)(num_classes=loss_fn.out_dim) net.to(device) # Load trained weights from saved state net, epoch = train_utils.load_state_dict_test(test_cfg.state_dict_path, net, train_val_cfg.optim.n_epochs, device) with torch.no_grad(): net.eval() for X_ in test_loader: X = X_.to(device) pred = net(X) break mcmc_pred = pred.cpu().numpy() mcmc_pred = mcmc_utils.remove_parameters_from_pred(mcmc_pred, remove_idx, return_as_tensor=False) # Instantiate posterior for BNN samples, to initialize the walkers bnn_post = getattr(h0rton.h0_inference.gaussian_bnn_posterior, loss_fn.posterior_name)(mcmc_Y_dim, device, mcmc_train_Y_mean, mcmc_train_Y_std) bnn_post.set_sliced_pred(torch.tensor(mcmc_pred)) n_walkers = test_cfg.numerics.mcmc.walkerRatio * ( mcmc_Y_dim + 1) # BNN params + H0 times walker ratio init_pos = bnn_post.sample( n_walkers, sample_seed=test_cfg.global_seed ) # [batch_size, n_walkers, mcmc_Y_dim] contains just the lens model params, no D_dt init_D_dt = np.random.uniform(0.0, 10000.0, size=(batch_size, n_walkers, 1)) # FIXME: init H0 hardcoded kwargs_model = dict(lens_model_list=['PEMD', 'SHEAR'], point_source_model_list=['SOURCE_POSITION'], source_light_model_list=['SERSIC_ELLIPSE']) astro_sig = test_cfg.image_position_likelihood.sigma # Get H0 samples for each system if not test_cfg.time_delay_likelihood.baobab_time_delays: if 'abcd_ordering_i' not in master_truth: raise ValueError( "If the time delay measurements were not generated using Baobab, the user must specify the order of image positions in which the time delays are listed, in order of increasing dec." ) lenses_skipped = [] # keeps track of lenses that skipped MCMC total_progress = tqdm(total=n_test) # For each lens system... for i, lens_i in enumerate(lens_range): # Each lens gets a unique random state for td and vd measurement error realizations. rs_lens = np.random.RandomState(lens_i) ########################### # Relevant data and prior # ########################### data_i = master_truth.iloc[lens_i].copy() parameter_penalty.set_bnn_post_params( mcmc_pred[lens_i, :]) # set the BNN parameters # Init values for the lens model params if test_cfg.lens_posterior_type == 'default': init_info = dict( zip( mcmc_Y_cols, mcmc_pred[lens_i, :len(mcmc_Y_cols)] * mcmc_train_Y_std + mcmc_train_Y_mean)) # mean of primary Gaussian else: # types 'hybrid_with_truth_mean' and 'truth' init_info = dict(zip(mcmc_Y_cols, data_i[mcmc_Y_cols].values)) # truth params if not test_cfg.h0_posterior.exclude_velocity_dispersion: parameter_penalty.set_vel_disp_params() raise NotImplementedError lcdm = LCDM(z_lens=data_i['z_lens'], z_source=data_i['z_src'], flat=True) # Data is BCD - A with a certain ABCD ordering, so inferred time delays should follow this convention. measured_td_wrt0 = np.array(data_i['measured_td']) # [n_img - 1,] measured_td_sig = np.array(data_i['measured_td_err']) # [n_img - 1,] abcd_ordering_i = np.array(data_i['abcd_ordering_i']) n_img = len(abcd_ordering_i) kwargs_data_joint = dict( time_delays_measured=measured_td_wrt0, time_delays_uncertainties=measured_td_sig, abcd_ordering_i=abcd_ordering_i, #vel_disp_measured=measured_vd, # TODO: optionally exclude #vel_disp_uncertainty=vel_disp_sig, ) if not test_cfg.h0_posterior.exclude_velocity_dispersion: measured_vd = data_i['true_vd'] * ( 1.0 + rs_lens.randn() * test_cfg.error_model.velocity_dispersion_frac_error) kwargs_data_joint['vel_disp_measured'] = measured_vd kwargs_data_joint[ 'vel_disp_sig'] = test_cfg.velocity_dispersion_likelihood.sigma ############################# # Parameter init and bounds # ############################# lens_kwargs = mcmc_utils.get_lens_kwargs(init_info, null_spread=null_spread) ps_kwargs = mcmc_utils.get_ps_kwargs_src_plane(init_info, astro_sig, null_spread=null_spread) src_light_kwargs = mcmc_utils.get_light_kwargs( init_info['src_light_R_sersic'], null_spread=null_spread) special_kwargs = mcmc_utils.get_special_kwargs( n_img, astro_sig, null_spread=null_spread ) # image position offset and time delay distance, aka the "special" parameters kwargs_params = { 'lens_model': lens_kwargs, 'point_source_model': ps_kwargs, 'source_model': src_light_kwargs, 'special': special_kwargs, } if test_cfg.numerics.solver_type == 'NONE': solver_type = 'NONE' else: solver_type = 'PROFILE_SHEAR' if n_img == 4 else 'CENTER' #solver_type = 'NONE' kwargs_constraints = { 'num_point_source_list': [n_img], 'Ddt_sampling': True, 'solver_type': solver_type, } kwargs_likelihood = { 'time_delay_likelihood': True, 'sort_images_by_dec': True, 'prior_lens': [], 'prior_special': [], 'check_bounds': True, 'check_matched_source_position': False, 'source_position_tolerance': 0.01, 'source_position_sigma': 0.01, 'source_position_likelihood': False, 'custom_logL_addition': custom_logL_addition, } ########################### # MCMC posterior sampling # ########################### fitting_seq = FittingSequence(kwargs_data_joint, kwargs_model, kwargs_constraints, kwargs_likelihood, kwargs_params, verbose=False, mpi=False) if i == 0: param_class = fitting_seq._updateManager.param_class n_params, param_class_Y_cols = param_class.num_param() init_pos = mcmc_utils.reorder_to_param_class( mcmc_Y_cols, param_class_Y_cols, init_pos, init_D_dt) # MCMC sample from the post-processed BNN posterior jointly with cosmology lens_i_start_time = time.time() if test_cfg.lens_posterior_type == 'default': test_cfg.numerics.mcmc.update(init_samples=init_pos[lens_i, :, :]) fitting_kwargs_list_mcmc = [['MCMC', test_cfg.numerics.mcmc]] #with HiddenPrints(): try: chain_list_mcmc = fitting_seq.fit_sequence( fitting_kwargs_list_mcmc) kwargs_result_mcmc = fitting_seq.best_fit() except: print("lens {:d} skipped".format(lens_i)) total_progress.update(1) lenses_skipped.append(lens_i) continue lens_i_end_time = time.time() inference_time = (lens_i_end_time - lens_i_start_time) / 60.0 # min ############################# # Plotting the MCMC samples # ############################# # sampler_type : 'EMCEE' # samples_mcmc : np.array of shape `[n_mcmc_eval, n_params]` # param_mcmc : list of str of length n_params, the parameter names sampler_type, samples_mcmc, param_mcmc, _ = chain_list_mcmc[0] new_samples_mcmc = mcmc_utils.postprocess_mcmc_chain( kwargs_result_mcmc, samples_mcmc, kwargs_model, lens_kwargs[2], ps_kwargs[2], src_light_kwargs[2], special_kwargs[2], kwargs_constraints) # Plot D_dt histogram D_dt_samples = new_samples_mcmc['D_dt'].values true_D_dt = lcdm.D_dt(H_0=data_i['H0'], Om0=0.27) data_i['D_dt'] = true_D_dt # Export D_dt samples for this lens lens_inference_dict = dict( D_dt_samples=D_dt_samples, # kappa_ext=0 for these samples inference_time=inference_time, true_D_dt=true_D_dt, ) lens_inference_dict_save_path = os.path.join( out_dir, 'D_dt_dict_{0:04d}.npy'.format(lens_i)) np.save(lens_inference_dict_save_path, lens_inference_dict) # Optionally export the MCMC samples if test_cfg.export.mcmc_samples: mcmc_samples_path = os.path.join( out_dir, 'mcmc_samples_{0:04d}.csv'.format(lens_i)) new_samples_mcmc.to_csv(mcmc_samples_path, index=None) # Optionally export the D_dt histogram if test_cfg.export.D_dt_histogram: cleaned_D_dt_samples = h0_utils.remove_outliers_from_lognormal( D_dt_samples, 3) _ = plotting_utils.plot_D_dt_histogram(cleaned_D_dt_samples, lens_i, true_D_dt, save_dir=out_dir) # Optionally export the plot of MCMC chain if test_cfg.export.mcmc_chain: mcmc_chain_path = os.path.join( out_dir, 'mcmc_chain_{0:04d}.png'.format(lens_i)) plotting_utils.plot_mcmc_chain(chain_list_mcmc, mcmc_chain_path) # Optionally export posterior cornerplot of select lens model parameters with D_dt if test_cfg.export.mcmc_corner: mcmc_corner_path = os.path.join( out_dir, 'mcmc_corner_{0:04d}.png'.format(lens_i)) plotting_utils.plot_mcmc_corner( new_samples_mcmc[test_cfg.export.mcmc_cols], None, test_cfg.export.mcmc_col_labels, mcmc_corner_path) total_progress.update(1) total_progress.close()
def main(): args = script_utils.parse_inference_args() test_cfg = TestConfig.from_file(args.test_config_file_path) baobab_cfg = BaobabConfig.from_file(test_cfg.data.test_baobab_cfg_path) cfg = TrainValConfig.from_file(test_cfg.train_val_config_file_path) # Set device and default data type device = torch.device(test_cfg.device_type) if device.type == 'cuda': torch.set_default_tensor_type('torch.cuda.' + cfg.data.float_type) else: torch.set_default_tensor_type('torch.' + cfg.data.float_type) script_utils.seed_everything(test_cfg.global_seed) ############ # Data I/O # ############ train_data = XYData( is_train=True, Y_cols=cfg.data.Y_cols, float_type=cfg.data.float_type, define_src_pos_wrt_lens=cfg.data.define_src_pos_wrt_lens, rescale_pixels=cfg.data.rescale_pixels, rescale_pixels_type=cfg.data.rescale_pixels_type, log_pixels=cfg.data.log_pixels, add_pixel_noise=cfg.data.add_pixel_noise, eff_exposure_time=cfg.data.eff_exposure_time, train_Y_mean=None, train_Y_std=None, train_baobab_cfg_path=cfg.data.train_baobab_cfg_path, val_baobab_cfg_path=None, for_cosmology=False) # Define val data and loader test_data = XYData( is_train=False, Y_cols=cfg.data.Y_cols, float_type=cfg.data.float_type, define_src_pos_wrt_lens=cfg.data.define_src_pos_wrt_lens, rescale_pixels=cfg.data.rescale_pixels, rescale_pixels_type=cfg.data.rescale_pixels_type, log_pixels=cfg.data.log_pixels, add_pixel_noise=cfg.data.add_pixel_noise, eff_exposure_time=cfg.data.eff_exposure_time, train_Y_mean=train_data.train_Y_mean, train_Y_std=train_data.train_Y_std, train_baobab_cfg_path=cfg.data.train_baobab_cfg_path, val_baobab_cfg_path=test_cfg.data.test_baobab_cfg_path, for_cosmology=True) master_truth = test_data.Y_df master_truth = metadata_utils.add_qphi_columns(master_truth) master_truth = metadata_utils.add_gamma_psi_ext_columns(master_truth) # Figure out how many lenses BNN will predict on (must be consecutive) if test_cfg.data.lens_indices is None: if args.lens_indices_path is None: # Test on all n_test lenses in the test set n_test = test_cfg.data.n_test lens_range = range(n_test) else: # Test on the lens indices in a text file at the specified path lens_range = [] with open(args.lens_indices_path, "r") as f: for line in f: lens_range.append(int(line.strip())) n_test = len(lens_range) print("Performing H0 inference on {:d} specified lenses...".format( n_test)) else: if args.lens_indices_path is None: # Test on the lens indices specified in the test config file lens_range = test_cfg.data.lens_indices n_test = len(lens_range) print("Performing H0 inference on {:d} specified lenses...".format( n_test)) else: raise ValueError( "Specific lens indices were specified in both the test config file and the command-line argument." ) batch_size = max(lens_range) + 1 test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=False, drop_last=True) # Output directory into which the H0 histograms and H0 samples will be saved out_dir = test_cfg.out_dir if not os.path.exists(out_dir): os.makedirs(out_dir) print("Destination folder path: {:s}".format(out_dir)) else: raise OSError("Destination folder already exists.") ##################### # Parameter penalty # ##################### # Instantiate original loss function with all BNN-predicted params orig_Y_cols = cfg.data.Y_cols loss_fn = getattr(h0rton.losses, cfg.model.likelihood_class)(Y_dim=test_data.Y_dim, device=device) # Not all predicted params will be sampled via MCMC params_to_remove = [] #'lens_light_R_sersic', 'src_light_R_sersic'] mcmc_Y_cols = [col for col in orig_Y_cols if col not in params_to_remove] mcmc_Y_dim = len(mcmc_Y_cols) # Instantiate loss function with just the MCMC params mcmc_loss_fn = getattr(h0rton.losses, cfg.model.likelihood_class)( Y_dim=test_data.Y_dim - len(params_to_remove), device=device) remove_param_idx, remove_idx = mcmc_utils.get_idx_for_params( mcmc_loss_fn.out_dim, orig_Y_cols, params_to_remove, cfg.model.likelihood_class) mcmc_train_Y_mean = np.delete(train_data.train_Y_mean, remove_param_idx) mcmc_train_Y_std = np.delete(train_data.train_Y_std, remove_param_idx) parameter_penalty = mcmc_utils.HybridBNNPenalty( mcmc_Y_cols, cfg.model.likelihood_class, mcmc_train_Y_mean, mcmc_train_Y_std, test_cfg.h0_posterior.exclude_velocity_dispersion, device) custom_logL_addition = parameter_penalty.evaluate null_spread = False ################### # BNN predictions # ################### # Instantiate BNN model net = getattr(h0rton.models, cfg.model.architecture)(num_classes=loss_fn.out_dim, dropout_rate=cfg.model.dropout_rate) net.to(device) # Load trained weights from saved state net, epoch = train_utils.load_state_dict_test(test_cfg.state_dict_path, net, cfg.optim.n_epochs, device) # When only generating BNN predictions (and not running MCMC), we can afford more n_dropout # otherwise, we fix n_dropout = mcmc_Y_dim + 1 if test_cfg.export.pred: n_dropout = 20 n_samples_per_dropout = test_cfg.numerics.mcmc.walkerRatio else: n_walkers = test_cfg.numerics.mcmc.walkerRatio * ( mcmc_Y_dim + 1) # (BNN params + D_dt) times walker ratio n_dropout = n_walkers // test_cfg.numerics.mcmc.walkerRatio n_samples_per_dropout = test_cfg.numerics.mcmc.walkerRatio # Initialize arrays that will store samples and BNN predictions init_pos = np.empty( [batch_size, n_dropout, n_samples_per_dropout, mcmc_Y_dim]) mcmc_pred = np.empty([batch_size, n_dropout, mcmc_loss_fn.out_dim]) with torch.no_grad(): net.train() # Send some empty forward passes through the test data without backprop to adjust batchnorm weights # (This is often not necessary. Beware if using for just 1 lens.) for nograd_pass in range(5): for X_, Y_ in test_loader: X = X_.to(device) _ = net(X) # Obtain MC dropout samples for d in range(n_dropout): net.eval() for X_, Y_ in test_loader: X = X_.to(device) Y = Y_.to(device) pred = net(X) break mcmc_pred_d = pred.cpu().numpy() # Replace BNN posterior's primary gaussian mean with truth values if test_cfg.lens_posterior_type == 'default_with_truth_mean': mcmc_pred_d[:, :len(mcmc_Y_cols)] = Y[:, :len(mcmc_Y_cols )].cpu().numpy() # Leave only the MCMC parameters in pred mcmc_pred_d = mcmc_utils.remove_parameters_from_pred( mcmc_pred_d, remove_idx, return_as_tensor=False) # Populate pred that will define the MCMC penalty function mcmc_pred[:, d, :] = mcmc_pred_d # Instantiate posterior to generate BNN samples, which will serve as initial positions for walkers bnn_post = getattr(h0rton.h0_inference.gaussian_bnn_posterior_cpu, loss_fn.posterior_name + 'CPU')( mcmc_Y_dim, mcmc_train_Y_mean, mcmc_train_Y_std) bnn_post.set_sliced_pred(mcmc_pred_d) init_pos[:, d, :, :] = bnn_post.sample( n_samples_per_dropout, sample_seed=test_cfg.global_seed + d) # contains just the lens model params, no D_dt gc.collect() # Terminate right after generating BNN predictions (no MCMC) if test_cfg.export.pred: import sys samples_path = os.path.join(out_dir, 'samples.npy') np.save(samples_path, init_pos) sys.exit() ############# # MCMC loop # ############# # Convolve MC dropout iterates with aleatoric samples init_pos = init_pos.transpose(0, 3, 1, 2).reshape( [batch_size, mcmc_Y_dim, -1]).transpose(0, 2, 1) # [batch_size, n_samples, mcmc_Y_dim] init_D_dt = np.random.uniform(0.0, 15000.0, size=(batch_size, n_walkers, 1)) pred_mean = np.mean(init_pos, axis=1) # [batch_size, mcmc_Y_dim] # Define assumed model profiles kwargs_model = dict(lens_model_list=['PEMD', 'SHEAR'], point_source_model_list=['SOURCE_POSITION'], source_light_model_list=['SERSIC_ELLIPSE']) astro_sig = test_cfg.image_position_likelihood.sigma # astrometric uncertainty # Get H0 samples for each system if not test_cfg.time_delay_likelihood.baobab_time_delays: if 'abcd_ordering_i' not in master_truth: raise ValueError( "If the time delay measurements were not generated using Baobab, the user must specify the order of image positions in which the time delays are listed, in order of increasing dec." ) kwargs_lens_eqn_solver = { 'min_distance': 0.05, 'search_window': baobab_cfg.instrument['pixel_scale'] * baobab_cfg.image['num_pix'], 'num_iter_max': 200 } total_progress = tqdm(total=n_test) realized_time_delays = pd.read_csv( test_cfg.error_model.realized_time_delays, index_col=None) # For each lens system... for i, lens_i in enumerate(lens_range): # Each lens gets a unique random state for time delay measurement error realizations. #rs_lens = np.random.RandomState(lens_i) # replaced with externally rendered time delays ########################### # Relevant data and prior # ########################### data_i = master_truth.iloc[lens_i].copy() # Set BNN pred defining parameter penalty for this lens, batch processes across n_dropout parameter_penalty.set_bnn_post_params(mcmc_pred[lens_i, :, :]) # Initialize lens model params walkers at the predictive mean init_info = dict( zip(mcmc_Y_cols, pred_mean[lens_i, :] * mcmc_train_Y_std + mcmc_train_Y_mean)) lcdm = LCDM(z_lens=data_i['z_lens'], z_source=data_i['z_src'], flat=True) true_img_dec = literal_eval(data_i['y_image']) n_img = len(true_img_dec) measured_td_sig = test_cfg.time_delay_likelihood.sigma measured_td_wrt0 = np.array( literal_eval( realized_time_delays.iloc[lens_i]['measured_td_wrt0'])) kwargs_data_joint = dict( time_delays_measured=measured_td_wrt0, time_delays_uncertainties=measured_td_sig, ) ############################# # Parameter init and bounds # ############################# lens_kwargs = mcmc_utils.get_lens_kwargs(init_info, null_spread=null_spread) ps_kwargs = mcmc_utils.get_ps_kwargs_src_plane(init_info, astro_sig) src_light_kwargs = mcmc_utils.get_light_kwargs( init_info['src_light_R_sersic'], null_spread=null_spread) special_kwargs = mcmc_utils.get_special_kwargs( n_img, astro_sig ) # image position offset and time delay distance, aka the "special" parameters kwargs_params = { 'lens_model': lens_kwargs, 'point_source_model': ps_kwargs, 'source_model': src_light_kwargs, 'special': special_kwargs, } if test_cfg.numerics.solver_type == 'NONE': solver_type = 'NONE' else: solver_type = 'PROFILE_SHEAR' if n_img == 4 else 'CENTER' #solver_type = 'NONE' kwargs_constraints = { 'num_point_source_list': [n_img], 'Ddt_sampling': True, 'solver_type': solver_type, } kwargs_likelihood = { 'time_delay_likelihood': True, 'sort_images_by_dec': True, 'prior_lens': [], 'prior_special': [], 'check_bounds': True, 'check_matched_source_position': False, 'source_position_tolerance': 0.01, 'source_position_sigma': 0.01, 'source_position_likelihood': False, 'custom_logL_addition': custom_logL_addition, 'kwargs_lens_eqn_solver': kwargs_lens_eqn_solver } ########################### # MCMC posterior sampling # ########################### fitting_seq = FittingSequence(kwargs_data_joint, kwargs_model, kwargs_constraints, kwargs_likelihood, kwargs_params, verbose=False, mpi=False) if i == 0: param_class = fitting_seq._updateManager.param_class n_params, param_class_Y_cols = param_class.num_param() init_pos = mcmc_utils.reorder_to_param_class( mcmc_Y_cols, param_class_Y_cols, init_pos, init_D_dt) # MCMC sample from the post-processed BNN posterior jointly with cosmology lens_i_start_time = time.time() if test_cfg.lens_posterior_type == 'default': test_cfg.numerics.mcmc.update(init_samples=init_pos[lens_i, :, :]) fitting_kwargs_list_mcmc = [['MCMC', test_cfg.numerics.mcmc]] #try: with script_utils.HiddenPrints(): chain_list_mcmc = fitting_seq.fit_sequence( fitting_kwargs_list_mcmc) kwargs_result_mcmc = fitting_seq.best_fit() lens_i_end_time = time.time() inference_time = (lens_i_end_time - lens_i_start_time) / 60.0 # min ############################# # Plotting the MCMC samples # ############################# # sampler_type : 'EMCEE' # samples_mcmc : np.array of shape `[n_mcmc_eval, n_params]` # param_mcmc : list of str of length n_params, the parameter names sampler_type, samples_mcmc, param_mcmc, _ = chain_list_mcmc[0] new_samples_mcmc = mcmc_utils.postprocess_mcmc_chain( kwargs_result_mcmc, samples_mcmc, kwargs_model, lens_kwargs[2], ps_kwargs[2], src_light_kwargs[2], special_kwargs[2], kwargs_constraints) # Plot D_dt histogram D_dt_samples = new_samples_mcmc['D_dt'].values true_D_dt = lcdm.D_dt(H_0=data_i['H0'], Om0=0.3) data_i['D_dt'] = true_D_dt # Export D_dt samples for this lens lens_inference_dict = dict( D_dt_samples=D_dt_samples, # kappa_ext=0 for these samples inference_time=inference_time, true_D_dt=true_D_dt, ) lens_inference_dict_save_path = os.path.join( out_dir, 'D_dt_dict_{0:04d}.npy'.format(lens_i)) np.save(lens_inference_dict_save_path, lens_inference_dict) # Optionally export the MCMC samples if test_cfg.export.mcmc_samples: mcmc_samples_path = os.path.join( out_dir, 'mcmc_samples_{0:04d}.csv'.format(lens_i)) new_samples_mcmc.to_csv(mcmc_samples_path, index=None) # Optionally export the D_dt histogram if test_cfg.export.D_dt_histogram: cleaned_D_dt_samples = h0_utils.remove_outliers_from_lognormal( D_dt_samples, 3) _ = plotting_utils.plot_D_dt_histogram(cleaned_D_dt_samples, lens_i, true_D_dt, save_dir=out_dir) # Optionally export the plot of MCMC chain if test_cfg.export.mcmc_chain: mcmc_chain_path = os.path.join( out_dir, 'mcmc_chain_{0:04d}.png'.format(lens_i)) plotting_utils.plot_mcmc_chain(chain_list_mcmc, mcmc_chain_path) # Optionally export posterior cornerplot of select lens model parameters with D_dt if test_cfg.export.mcmc_corner: mcmc_corner_path = os.path.join( out_dir, 'mcmc_corner_{0:04d}.png'.format(lens_i)) plotting_utils.plot_mcmc_corner( new_samples_mcmc[test_cfg.export.mcmc_cols], data_i[test_cfg.export.mcmc_cols], test_cfg.export.mcmc_col_labels, mcmc_corner_path) total_progress.update(1) gc.collect() realized_time_delays.to_csv(os.path.join(out_dir, 'realized_time_delays.csv'), index=None) total_progress.close()
def main(): args = script_utils.parse_inference_args() test_cfg = TestConfig.from_file(args.test_config_file_path) baobab_cfg = BaobabConfig.from_file(test_cfg.data.test_baobab_cfg_path) cfg = TrainValConfig.from_file(test_cfg.train_val_config_file_path) # Set device and default data type device = torch.device(test_cfg.device_type) if device.type == 'cuda': torch.set_default_tensor_type('torch.cuda.' + cfg.data.float_type) else: torch.set_default_tensor_type('torch.' + cfg.data.float_type) script_utils.seed_everything(test_cfg.global_seed) ############ # Data I/O # ############ # Define val data and loader test_data = XYData( is_train=False, Y_cols=cfg.data.Y_cols, float_type=cfg.data.float_type, define_src_pos_wrt_lens=cfg.data.define_src_pos_wrt_lens, rescale_pixels=False, rescale_pixels_type=None, log_pixels=False, add_pixel_noise=cfg.data.add_pixel_noise, eff_exposure_time={"TDLMC_F160W": test_cfg.data.eff_exposure_time}, train_Y_mean=np.zeros((1, len(cfg.data.Y_cols))), train_Y_std=np.ones((1, len(cfg.data.Y_cols))), train_baobab_cfg_path=cfg.data.train_baobab_cfg_path, val_baobab_cfg_path=test_cfg.data.test_baobab_cfg_path, for_cosmology=True) master_truth = test_data.Y_df master_truth = metadata_utils.add_qphi_columns(master_truth) master_truth = metadata_utils.add_gamma_psi_ext_columns(master_truth) # Figure out how many lenses BNN will predict on (must be consecutive) if test_cfg.data.lens_indices is None: if args.lens_indices_path is None: # Test on all n_test lenses in the test set n_test = test_cfg.data.n_test lens_range = range(n_test) else: # Test on the lens indices in a text file at the specified path lens_range = [] with open(args.lens_indices_path, "r") as f: for line in f: lens_range.append(int(line.strip())) n_test = len(lens_range) print("Performing H0 inference on {:d} specified lenses...".format( n_test)) else: if args.lens_indices_path is None: # Test on the lens indices specified in the test config file lens_range = test_cfg.data.lens_indices n_test = len(lens_range) print("Performing H0 inference on {:d} specified lenses...".format( n_test)) else: raise ValueError( "Specific lens indices were specified in both the test config file and the command-line argument." ) batch_size = max(lens_range) + 1 test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=False, drop_last=True) # Output directory into which the H0 histograms and H0 samples will be saved out_dir = test_cfg.out_dir if not os.path.exists(out_dir): os.makedirs(out_dir) print("Destination folder path: {:s}".format(out_dir)) else: warnings.warn("Destination folder already exists.") ################ # Compile data # ################ # Image data with torch.no_grad(): for X_, Y_ in test_loader: X = X_.to(device) break X = X.detach().cpu().numpy() ############# # MCMC loop # ############# kwargs_lens_eqn_solver = dict( min_distance=0.05, search_window=baobab_cfg.instrument['pixel_scale'] * baobab_cfg.image['num_pix'], num_iter_max=200) fm_posterior = ForwardModelingPosterior( kwargs_lens_eqn_solver=kwargs_lens_eqn_solver, astrometric_sigma=test_cfg.image_position_likelihood.sigma, supersampling_factor=baobab_cfg.numerics.supersampling_factor) # Get H0 samples for each system if not test_cfg.time_delay_likelihood.baobab_time_delays: if 'abcd_ordering_i' not in master_truth: raise ValueError( "If the time delay measurements were not generated using Baobab, the user must specify the order of image positions in which the time delays are listed, in order of increasing dec." ) total_progress = tqdm(total=n_test) realized_time_delays = pd.read_csv( test_cfg.error_model.realized_time_delays, index_col=None) # For each lens system... for i, lens_i in enumerate(lens_range): ########################### # Relevant data and prior # ########################### data_i = master_truth.iloc[lens_i].copy() lcdm = LCDM(z_lens=data_i['z_lens'], z_source=data_i['z_src'], flat=True) measured_td_wrt0 = np.array( literal_eval( realized_time_delays.iloc[lens_i]['measured_td_wrt0'])) n_img = len(measured_td_wrt0) + 1 #print(baobab_cfg.survey_object_dict) fm_posterior.set_kwargs_data_joint( image=X[lens_i, 0, :, :], measured_td=measured_td_wrt0, measured_td_sigma=test_cfg.time_delay_likelihood.sigma, survey_object_dict=baobab_cfg.survey_object_dict, eff_exposure_time=test_cfg.data.eff_exposure_time, ) # Update solver according to number of lensed images if test_cfg.numerics.solver_type == 'NONE': fm_posterior.kwargs_constraints['solver_type'] = 'NONE' else: fm_posterior.kwargs_constraints[ 'solver_type'] = 'PROFILE_SHEAR' if n_img == 4 else 'ELLIPSE' fm_posterior.kwargs_constraints['num_point_source_list'] = [n_img] #print(fm_posterior.kwargs_params['point_source_model'][0][0]) true_D_dt = lcdm.D_dt(H_0=data_i['H0'], Om0=0.3) # Pull truth param values and initialize walkers there if test_cfg.numerics.initialize_walkers_to_truth: fm_posterior.kwargs_lens_init = metadata_utils.get_kwargs_lens_mass( data_i) fm_posterior.kwargs_lens_light_init = metadata_utils.get_kwargs_lens_light( data_i) fm_posterior.kwargs_source_init = metadata_utils.get_kwargs_src_light( data_i) fm_posterior.kwargs_ps_init = metadata_utils.get_kwargs_ps_lensed( data_i) fm_posterior.kwargs_special_init = dict(D_dt=true_D_dt) ########################### # MCMC posterior sampling # ########################### lens_i_start_time = time.time() #with script_utils.HiddenPrints(): chain_list_mcmc, kwargs_result_mcmc = fm_posterior.run_mcmc( test_cfg.numerics.mcmc) lens_i_end_time = time.time() inference_time = (lens_i_end_time - lens_i_start_time) / 60.0 # min ############################# # Plotting the MCMC samples # ############################# # sampler_type : 'EMCEE' # samples_mcmc : np.array of shape `[n_mcmc_eval, n_params]` # param_mcmc : list of str of length n_params, the parameter names sampler_type, samples_mcmc, param_mcmc, _ = chain_list_mcmc[0] new_samples_mcmc = mcmc_utils.postprocess_mcmc_chain( kwargs_result_mcmc, samples_mcmc, fm_posterior.kwargs_model, fm_posterior.kwargs_params['lens_model'][2], fm_posterior.kwargs_params['point_source_model'][2], fm_posterior.kwargs_params['source_model'][2], fm_posterior.kwargs_params['special'][2], fm_posterior.kwargs_constraints, kwargs_fixed_lens_light=fm_posterior. kwargs_params['lens_light_model'][2], verbose=False) #from lenstronomy.Plots import chain_plot model_plot = ModelPlot(fm_posterior.multi_band_list, fm_posterior.kwargs_model, kwargs_result_mcmc, arrow_size=0.02, cmap_string="gist_heat") plotting_utils.plot_forward_modeling_comparisons(model_plot, out_dir) # Plot D_dt histogram D_dt_samples = new_samples_mcmc[ 'D_dt'].values # may contain negative values data_i['D_dt'] = true_D_dt # Export D_dt samples for this lens lens_inference_dict = dict( D_dt_samples=D_dt_samples, # kappa_ext=0 for these samples inference_time=inference_time, true_D_dt=true_D_dt, ) lens_inference_dict_save_path = os.path.join( out_dir, 'D_dt_dict_{0:04d}.npy'.format(lens_i)) np.save(lens_inference_dict_save_path, lens_inference_dict) # Optionally export the MCMC samples if test_cfg.export.mcmc_samples: mcmc_samples_path = os.path.join( out_dir, 'mcmc_samples_{0:04d}.csv'.format(lens_i)) new_samples_mcmc.to_csv(mcmc_samples_path, index=None) # Optionally export the D_dt histogram if test_cfg.export.D_dt_histogram: cleaned_D_dt_samples = h0_utils.remove_outliers_from_lognormal( D_dt_samples, 3) _ = plotting_utils.plot_D_dt_histogram(cleaned_D_dt_samples, lens_i, true_D_dt, save_dir=out_dir) # Optionally export the plot of MCMC chain if test_cfg.export.mcmc_chain: mcmc_chain_path = os.path.join( out_dir, 'mcmc_chain_{0:04d}.png'.format(lens_i)) plotting_utils.plot_mcmc_chain(chain_list_mcmc, mcmc_chain_path) # Optionally export posterior cornerplot of select lens model parameters with D_dt if test_cfg.export.mcmc_corner: mcmc_corner_path = os.path.join( out_dir, 'mcmc_corner_{0:04d}.png'.format(lens_i)) plotting_utils.plot_mcmc_corner( new_samples_mcmc[test_cfg.export.mcmc_cols], data_i[test_cfg.export.mcmc_cols], test_cfg.export.mcmc_col_labels, mcmc_corner_path) total_progress.update(1) gc.collect() realized_time_delays.to_csv(os.path.join(out_dir, 'realized_time_delays.csv'), index=None) total_progress.close()
def main(): args = parse_args() cfg = TrainValConfig.from_file(args.user_cfg_path) # Set device and default data type device = torch.device(cfg.device_type) if device.type == 'cuda': torch.set_default_tensor_type('torch.cuda.' + cfg.data.float_type) else: torch.set_default_tensor_type('torch.' + cfg.data.float_type) script_utils.seed_everything(cfg.global_seed) ############ # Data I/O # ############ # Define training data and loader #torch.multiprocessing.set_start_method('spawn', force=True) train_data = XYData( is_train=True, Y_cols=cfg.data.Y_cols, float_type=cfg.data.float_type, define_src_pos_wrt_lens=cfg.data.define_src_pos_wrt_lens, rescale_pixels=cfg.data.rescale_pixels, log_pixels=cfg.data.log_pixels, add_pixel_noise=cfg.data.add_pixel_noise, eff_exposure_time=cfg.data.eff_exposure_time, train_Y_mean=None, train_Y_std=None, train_baobab_cfg_path=cfg.data.train_baobab_cfg_path, val_baobab_cfg_path=cfg.data.val_baobab_cfg_path, for_cosmology=False) train_loader = DataLoader(train_data, batch_size=cfg.optim.batch_size, shuffle=True, drop_last=True) n_train = len(train_data) - (len(train_data) % cfg.optim.batch_size) # Define val data and loader val_data = XYData(is_train=False, Y_cols=cfg.data.Y_cols, float_type=cfg.data.float_type, define_src_pos_wrt_lens=cfg.data.define_src_pos_wrt_lens, rescale_pixels=cfg.data.rescale_pixels, log_pixels=cfg.data.log_pixels, add_pixel_noise=cfg.data.add_pixel_noise, eff_exposure_time=cfg.data.eff_exposure_time, train_Y_mean=train_data.train_Y_mean, train_Y_std=train_data.train_Y_std, train_baobab_cfg_path=cfg.data.train_baobab_cfg_path, val_baobab_cfg_path=cfg.data.val_baobab_cfg_path, for_cosmology=False) val_loader = DataLoader( val_data, batch_size=min(len(val_data), cfg.optim.batch_size), shuffle=False, drop_last=True, ) n_val = len(val_data) - (len(val_data) % min(len(val_data), cfg.optim.batch_size)) ######### # Model # ######### Y_dim = val_data.Y_dim # Instantiate loss function loss_fn = getattr(h0rton.losses, cfg.model.likelihood_class)(Y_dim=Y_dim, device=device) # Instantiate posterior (for logging) bnn_post = getattr(h0rton.h0_inference.gaussian_bnn_posterior, loss_fn.posterior_name)(val_data.Y_dim, device, val_data.train_Y_mean, val_data.train_Y_std) # Instantiate model net = getattr(h0rton.models, cfg.model.architecture)(num_classes=loss_fn.out_dim, dropout_rate=cfg.model.dropout_rate) net.to(device) ################ # Optimization # ################ # Instantiate optimizer optimizer = optim.Adam(net.parameters(), lr=cfg.optim.learning_rate, amsgrad=False, weight_decay=cfg.optim.weight_decay) #optimizer = optim.SGD(net.parameters(), lr=cfg.optim.learning_rate, weight_decay=cfg.optim.weight_decay) lr_scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.75, patience=50, cooldown=50, min_lr=1e-5, verbose=True) #lr_scheduler = optim.lr_scheduler.CyclicLR(optimizer, base_lr=cfg.optim.learning_rate*0.2, max_lr=cfg.optim.learning_rate, step_size_up=cfg.optim.lr_scheduler.step_size_up, step_size_down=None, mode='triangular2', gamma=1.0, scale_fn=None, scale_mode='cycle', cycle_momentum=True, base_momentum=0.8, max_momentum=0.9, last_epoch=-1) # Saving/loading state dicts checkpoint_dir = cfg.checkpoint.save_dir if not os.path.exists(checkpoint_dir): os.mkdir(checkpoint_dir) if cfg.model.load_state: epoch, net, optimizer, train_loss, val_loss = train_utils.load_state_dict( cfg.model.state_path, net, optimizer, cfg.optim.n_epochs, device) epoch += 1 # resume with next epoch last_saved_val_loss = val_loss print(lr_scheduler.state_dict()) print(optimizer.state_dict()) else: epoch = 0 last_saved_val_loss = np.inf logger = SummaryWriter() model_path = '' print("Training set size: {:d}".format(n_train)) print("Validation set size: {:d}".format(n_val)) progress = tqdm(range(epoch, cfg.optim.n_epochs)) n_iter = 0 for epoch in progress: #net.apply(h0rton.models.deactivate_batchnorm) train_loss = 0.0 for batch_idx, (X_tr, Y_tr) in enumerate(train_loader): n_iter += 1 net.train() X_tr = X_tr.to(device) Y_tr = Y_tr.to(device) # Update weights optimizer.zero_grad() pred_tr = net.forward(X_tr) loss = loss_fn(pred_tr, Y_tr) loss.backward() optimizer.step() # For logging train_loss += (loss.detach().item() - train_loss) / (1 + batch_idx) # Step lr_scheduler every batch lr_scheduler.step(train_loss) tqdm.write("Iter [{}/{}/{}]: TRAIN Loss: {:.4f}".format( n_iter, epoch + 1, cfg.optim.n_epochs, train_loss)) if (n_iter) % (cfg.monitoring.interval) == 0: net.eval() with torch.no_grad(): #net.apply(h0rton.models.deactivate_batchnorm) val_loss = 0.0 for batch_idx, (X_v, Y_v) in enumerate(val_loader): X_v = X_v.to(device) Y_v = Y_v.to(device) pred_v = net.forward(X_v) nograd_loss_v = loss_fn(pred_v, Y_v) val_loss += (nograd_loss_v.detach().item() - val_loss) / (1 + batch_idx) tqdm.write("Epoch [{}/{}]: VALID Loss: {:.4f}".format( epoch + 1, cfg.optim.n_epochs, val_loss)) # Subset of validation for plotting n_plotting = cfg.monitoring.n_plotting #X_plt = X_v[:n_plotting].cpu().numpy() #Y_plt = Y[:n_plotting].cpu().numpy() Y_plt_orig = bnn_post.transform_back_mu( Y_v[:n_plotting]).cpu().numpy() pred_plt = pred_v[:n_plotting] # Slice pred_plt into meaningful Gaussian parameters for this batch bnn_post.set_sliced_pred(pred_plt) mu_orig = bnn_post.transform_back_mu( bnn_post.mu).cpu().numpy() # Log train and val metrics loss_dict = {'train': train_loss, 'val': val_loss} logger.add_scalars('metrics/loss', loss_dict, n_iter) #mae = train_utils.get_mae(mu, Y_plt) mae_dict = train_utils.get_mae(mu_orig, Y_plt_orig, cfg.data.Y_cols) logger.add_scalars('metrics/mae', mae_dict, n_iter) # Log log determinant of the covariance matrix if cfg.model.likelihood_class in [ 'DoubleGaussianNLL', 'FullRankGaussianNLL' ]: logdet = train_utils.get_logdet( bnn_post.tril_elements.cpu().numpy(), Y_dim) logger.add_histogram('logdet_cov_mat', logdet, n_iter) # Log second Gaussian stats if cfg.model.likelihood_class in [ 'DoubleGaussianNLL', 'DoubleLowRankGaussianNLL' ]: # Log histogram of w2 logger.add_histogram('val_pred/weight_gaussian2', bnn_post.w2.cpu().numpy(), n_iter) # Log RMSE of second Gaussian mu2_orig = bnn_post.transform_back_mu( bnn_post.mu2).cpu().numpy() mae2_dict = train_utils.get_mae( mu2_orig, Y_plt_orig, cfg.data.Y_cols) logger.add_scalars('metrics/mae2', mae2_dict, n_iter) # Log logdet of second Gaussian logdet2 = train_utils.get_logdet( bnn_post.tril_elements2.cpu().numpy(), Y_dim) logger.add_histogram('logdet_cov_mat2', logdet2, n_iter) if val_loss < last_saved_val_loss: os.remove(model_path) if os.path.exists( model_path) else None model_path = train_utils.save_state_dict( net, optimizer, lr_scheduler, train_loss, val_loss, checkpoint_dir, cfg.model.architecture, epoch) last_saved_val_loss = val_loss logger.close() # Save final state dict if val_loss < last_saved_val_loss: os.remove(model_path) if os.path.exists(model_path) else None model_path = train_utils.save_state_dict(net, optimizer, lr_scheduler, train_loss, val_loss, checkpoint_dir, cfg.model.architecture, epoch) print("Saved model at {:s}".format(os.path.abspath(model_path)))