def short_time_haar(x, window_len=4096, window_shift=2048): w = list(x[0:len(x) - len(x) % window_shift]) transformed = [] for t in range(0, (len(w) - window_len)/window_shift + 1): window_haar = haar_transform.haar(w[window_shift * t: window_shift * t + window_len]) transformed.append(window_haar) return scipy.array(transformed)
negative[j] = data[i] n_entries[negative[j]] = i + base break negative.sort(reverse=True) return p_entries, n_entries if __name__ == '__main__': f = open(os.path.join(dir, file_name), 'r') # Get just the displacement in the x coordinate x = [] for line in f: x.append(float(line.split(',')[6])) haar_x = haar_transform.haar(haar_transform.trim_n2(x)) positive_largest, negative_largest = find_edges(haar_x[len(haar_x)/2:], len(haar_x)/2, 5) haar_x1 = smooth(haar_x, 1) haar_x2 = smooth(haar_x, 2) haar_x3 = smooth(haar_x, 3) haar_x4 = smooth(haar_x, 4) #Graph it, and save figure as a .png graph_accel(x) graph_accel(haar_x) graph_accel(haar_transform.inverse_haar(haar_x)) graph_accel(haar_transform.inverse_haar(haar_x1)) graph_accel(haar_transform.inverse_haar(haar_x2)) graph_accel(haar_transform.inverse_haar(haar_x3)) graph_accel(haar_transform.inverse_haar(haar_x4))