def _setup_actor_critic_agent(self, ppo_cfg: Config) -> None: r""" Sets up actor critic and agent for PPO Args: ppo_cfg: config node with relevant params Returns: None """ logger.add_filehandler(ppo_cfg.log_file) self.actor_critic = Policy( observation_space=self.envs.observation_spaces[0], action_space=self.envs.action_spaces[0], hidden_size=512, goal_sensor_uuid=self.config.TASK_CONFIG.TASK.GOAL_SENSOR_UUID, ) self.actor_critic.to(self.device) self.agent = PPO( actor_critic=self.actor_critic, clip_param=ppo_cfg.clip_param, ppo_epoch=ppo_cfg.ppo_epoch, num_mini_batch=ppo_cfg.num_mini_batch, value_loss_coef=ppo_cfg.value_loss_coef, entropy_coef=ppo_cfg.entropy_coef, lr=ppo_cfg.lr, eps=ppo_cfg.eps, max_grad_norm=ppo_cfg.max_grad_norm, )
def __init__(self, config: Config): spaces = { "pointgoal": Box( low=np.finfo(np.float32).min, high=np.finfo(np.float32).max, shape=(2, ), dtype=np.float32, ) } if config.INPUT_TYPE in ["depth", "rgbd"]: spaces["depth"] = Box( low=0, high=1, shape=(config.RESOLUTION, config.RESOLUTION, 1), dtype=np.float32, ) if config.INPUT_TYPE in ["rgb", "rgbd"]: spaces["rgb"] = Box( low=0, high=255, shape=(config.RESOLUTION, config.RESOLUTION, 3), dtype=np.uint8, ) observation_spaces = Dict(spaces) action_spaces = Discrete(4) self.device = (torch.device("cuda:{}".format(config.PTH_GPU_ID)) if torch.cuda.is_available() else torch.device("cpu")) self.hidden_size = config.HIDDEN_SIZE random.seed(config.RANDOM_SEED) torch.random.manual_seed(config.RANDOM_SEED) if torch.cuda.is_available(): torch.backends.cudnn.deterministic = True self.actor_critic = Policy( observation_space=observation_spaces, action_space=action_spaces, hidden_size=self.hidden_size, ) self.actor_critic.to(self.device) if config.MODEL_PATH: ckpt = torch.load(config.MODEL_PATH, map_location=self.device) # Filter only actor_critic weights self.actor_critic.load_state_dict({ k.replace("actor_critic.", ""): v for k, v in ckpt["state_dict"].items() if "actor_critic" in k }) else: habitat.logger.error("Model checkpoint wasn't loaded, evaluating " "a random model.") self.test_recurrent_hidden_states = None self.not_done_masks = None
class PPOAgent(Agent): def __init__(self, config: Config): self.goal_sensor_uuid = config.GOAL_SENSOR_UUID spaces = { self.goal_sensor_uuid: Box( low=np.finfo(np.float32).min, high=np.finfo(np.float32).max, shape=(2, ), dtype=np.float32, ) } if config.INPUT_TYPE in ["depth", "rgbd"]: spaces["depth"] = Box( low=0, high=1, shape=(config.RESOLUTION, config.RESOLUTION, 1), dtype=np.float32, ) if config.INPUT_TYPE in ["rgb", "rgbd"]: spaces["rgb"] = Box( low=0, high=255, shape=(config.RESOLUTION, config.RESOLUTION, 3), dtype=np.uint8, ) observation_spaces = Dict(spaces) action_spaces = Discrete(4) self.device = (torch.device("cuda:{}".format(config.PTH_GPU_ID)) if torch.cuda.is_available() else torch.device("cpu")) self.hidden_size = config.HIDDEN_SIZE random.seed(config.RANDOM_SEED) torch.random.manual_seed(config.RANDOM_SEED) if torch.cuda.is_available(): torch.backends.cudnn.deterministic = True self.actor_critic = Policy( observation_space=observation_spaces, action_space=action_spaces, hidden_size=self.hidden_size, goal_sensor_uuid=self.goal_sensor_uuid, ) self.actor_critic.to(self.device) if config.MODEL_PATH: ckpt = torch.load(config.MODEL_PATH, map_location=self.device) # Filter only actor_critic weights self.actor_critic.load_state_dict({ k.replace("actor_critic.", ""): v for k, v in ckpt["state_dict"].items() if "actor_critic" in k }) else: habitat.logger.error("Model checkpoint wasn't loaded, evaluating " "a random model.") self.test_recurrent_hidden_states = None self.not_done_masks = None def reset(self): self.test_recurrent_hidden_states = torch.zeros(1, self.hidden_size, device=self.device) self.not_done_masks = torch.zeros(1, 1, device=self.device) def act(self, observations): batch = batch_obs([observations]) for sensor in batch: batch[sensor] = batch[sensor].to(self.device) with torch.no_grad(): _, actions, _, self.test_recurrent_hidden_states = self.actor_critic.act( batch, self.test_recurrent_hidden_states, self.not_done_masks, deterministic=False, ) # Make masks not done till reset (end of episode) will be called self.not_done_masks = torch.ones(1, 1, device=self.device) return actions[0][0].item()
class PPOTrainer(BaseRLTrainer): r""" Trainer class for PPO algorithm Paper: https://arxiv.org/abs/1707.06347 """ supported_tasks = ["Nav-v0"] def __init__(self, config=None): super().__init__(config) self.actor_critic = None self.agent = None self.envs = None self.device = None self.video_option = [] if config is not None: logger.info(f"config: {config}") def _setup_actor_critic_agent(self, ppo_cfg: Config) -> None: r""" Sets up actor critic and agent for PPO Args: ppo_cfg: config node with relevant params Returns: None """ logger.add_filehandler(ppo_cfg.log_file) self.actor_critic = Policy( observation_space=self.envs.observation_spaces[0], action_space=self.envs.action_spaces[0], hidden_size=512, goal_sensor_uuid=self.config.TASK_CONFIG.TASK.GOAL_SENSOR_UUID, ) self.actor_critic.to(self.device) self.agent = PPO( actor_critic=self.actor_critic, clip_param=ppo_cfg.clip_param, ppo_epoch=ppo_cfg.ppo_epoch, num_mini_batch=ppo_cfg.num_mini_batch, value_loss_coef=ppo_cfg.value_loss_coef, entropy_coef=ppo_cfg.entropy_coef, lr=ppo_cfg.lr, eps=ppo_cfg.eps, max_grad_norm=ppo_cfg.max_grad_norm, ) def save_checkpoint(self, file_name: str) -> None: r""" Save checkpoint with specified name Args: file_name: file name for checkpoint Returns: None """ checkpoint = { "state_dict": self.agent.state_dict(), "config": self.config, } torch.save( checkpoint, os.path.join(self.config.TRAINER.RL.PPO.checkpoint_folder, file_name), ) def load_checkpoint(self, checkpoint_path: str, *args, **kwargs) -> Dict: r""" Load checkpoint of specified path as a dict Args: checkpoint_path: path of target checkpoint *args: additional positional args **kwargs: additional keyword args Returns: dict containing checkpoint info """ return torch.load(checkpoint_path, map_location=self.device) def train(self) -> None: r""" Main method for training PPO Returns: None """ assert ( self.config is not None ), "trainer is not properly initialized, need to specify config file" self.envs = construct_envs(self.config, NavRLEnv) ppo_cfg = self.config.TRAINER.RL.PPO self.device = torch.device("cuda", ppo_cfg.pth_gpu_id) if not os.path.isdir(ppo_cfg.checkpoint_folder): os.makedirs(ppo_cfg.checkpoint_folder) self._setup_actor_critic_agent(ppo_cfg) logger.info("agent number of parameters: {}".format( sum(param.numel() for param in self.agent.parameters()))) observations = self.envs.reset() batch = batch_obs(observations) rollouts = RolloutStorage( ppo_cfg.num_steps, self.envs.num_envs, self.envs.observation_spaces[0], self.envs.action_spaces[0], ppo_cfg.hidden_size, ) for sensor in rollouts.observations: rollouts.observations[sensor][0].copy_(batch[sensor]) rollouts.to(self.device) episode_rewards = torch.zeros(self.envs.num_envs, 1) episode_counts = torch.zeros(self.envs.num_envs, 1) current_episode_reward = torch.zeros(self.envs.num_envs, 1) window_episode_reward = deque(maxlen=ppo_cfg.reward_window_size) window_episode_counts = deque(maxlen=ppo_cfg.reward_window_size) t_start = time.time() env_time = 0 pth_time = 0 count_steps = 0 count_checkpoints = 0 with (get_tensorboard_writer( log_dir=ppo_cfg.tensorboard_dir, purge_step=count_steps, flush_secs=30, )) as writer: for update in range(ppo_cfg.num_updates): if ppo_cfg.use_linear_lr_decay: update_linear_schedule( self.agent.optimizer, update, ppo_cfg.num_updates, ppo_cfg.lr, ) if ppo_cfg.use_linear_clip_decay: self.agent.clip_param = ppo_cfg.clip_param * ( 1 - update / ppo_cfg.num_updates) for step in range(ppo_cfg.num_steps): t_sample_action = time.time() # sample actions with torch.no_grad(): step_observation = { k: v[step] for k, v in rollouts.observations.items() } ( values, actions, actions_log_probs, recurrent_hidden_states, ) = self.actor_critic.act( step_observation, rollouts.recurrent_hidden_states[step], rollouts.masks[step], ) pth_time += time.time() - t_sample_action t_step_env = time.time() outputs = self.envs.step([a[0].item() for a in actions]) observations, rewards, dones, infos = [ list(x) for x in zip(*outputs) ] env_time += time.time() - t_step_env t_update_stats = time.time() batch = batch_obs(observations) rewards = torch.tensor(rewards, dtype=torch.float) rewards = rewards.unsqueeze(1) masks = torch.tensor( [[0.0] if done else [1.0] for done in dones], dtype=torch.float, ) current_episode_reward += rewards episode_rewards += (1 - masks) * current_episode_reward episode_counts += 1 - masks current_episode_reward *= masks rollouts.insert( batch, recurrent_hidden_states, actions, actions_log_probs, values, rewards, masks, ) count_steps += self.envs.num_envs pth_time += time.time() - t_update_stats window_episode_reward.append(episode_rewards.clone()) window_episode_counts.append(episode_counts.clone()) t_update_model = time.time() with torch.no_grad(): last_observation = { k: v[-1] for k, v in rollouts.observations.items() } next_value = self.actor_critic.get_value( last_observation, rollouts.recurrent_hidden_states[-1], rollouts.masks[-1], ).detach() rollouts.compute_returns(next_value, ppo_cfg.use_gae, ppo_cfg.gamma, ppo_cfg.tau) value_loss, action_loss, dist_entropy = self.agent.update( rollouts) rollouts.after_update() pth_time += time.time() - t_update_model losses = [value_loss, action_loss] stats = zip( ["count", "reward"], [window_episode_counts, window_episode_reward], ) deltas = { k: ((v[-1] - v[0]).sum().item() if len(v) > 1 else v[0].sum().item()) for k, v in stats } deltas["count"] = max(deltas["count"], 1.0) writer.add_scalar("reward", deltas["reward"] / deltas["count"], count_steps) writer.add_scalars( "losses", {k: l for l, k in zip(losses, ["value", "policy"])}, count_steps, ) # log stats if update > 0 and update % ppo_cfg.log_interval == 0: logger.info("update: {}\tfps: {:.3f}\t".format( update, count_steps / (time.time() - t_start))) logger.info( "update: {}\tenv-time: {:.3f}s\tpth-time: {:.3f}s\t" "frames: {}".format(update, env_time, pth_time, count_steps)) window_rewards = (window_episode_reward[-1] - window_episode_reward[0]).sum() window_counts = (window_episode_counts[-1] - window_episode_counts[0]).sum() if window_counts > 0: logger.info( "Average window size {} reward: {:3f}".format( len(window_episode_reward), (window_rewards / window_counts).item(), )) else: logger.info("No episodes finish in current window") # checkpoint model if update % ppo_cfg.checkpoint_interval == 0: self.save_checkpoint(f"ckpt.{count_checkpoints}.pth") count_checkpoints += 1 def eval(self) -> None: r""" Main method of evaluating PPO Returns: None """ ppo_cfg = self.config.TRAINER.RL.PPO self.device = torch.device("cuda", ppo_cfg.pth_gpu_id) self.video_option = ppo_cfg.video_option.strip().split(",") if "tensorboard" in self.video_option: assert (ppo_cfg.tensorboard_dir is not None ), "Must specify a tensorboard directory for video display" if "disk" in self.video_option: assert (ppo_cfg.video_dir is not None ), "Must specify a directory for storing videos on disk" with get_tensorboard_writer(ppo_cfg.tensorboard_dir, purge_step=0, flush_secs=30) as writer: if os.path.isfile(ppo_cfg.eval_ckpt_path_or_dir): # evaluate singe checkpoint self._eval_checkpoint(ppo_cfg.eval_ckpt_path_or_dir, writer) else: # evaluate multiple checkpoints in order prev_ckpt_ind = -1 while True: current_ckpt = None while current_ckpt is None: current_ckpt = poll_checkpoint_folder( ppo_cfg.eval_ckpt_path_or_dir, prev_ckpt_ind) time.sleep(2) # sleep for 2 secs before polling again logger.warning( "=============current_ckpt: {}=============".format( current_ckpt)) prev_ckpt_ind += 1 self._eval_checkpoint( checkpoint_path=current_ckpt, writer=writer, cur_ckpt_idx=prev_ckpt_ind, ) def _eval_checkpoint( self, checkpoint_path: str, writer: TensorboardWriter, cur_ckpt_idx: int = 0, ) -> None: r""" Evaluates a single checkpoint Args: checkpoint_path: path of checkpoint writer: tensorboard writer object for logging to tensorboard cur_ckpt_idx: index of cur checkpoint for logging Returns: None """ ckpt_dict = self.load_checkpoint(checkpoint_path, map_location=self.device) ckpt_config = ckpt_dict["config"] config = self.config.clone() ckpt_cmd_opts = ckpt_config.CMD_TRAILING_OPTS eval_cmd_opts = config.CMD_TRAILING_OPTS # config merge priority: eval_opts > ckpt_opts > eval_cfg > ckpt_cfg # first line for old checkpoint compatibility config.merge_from_other_cfg(ckpt_config) config.merge_from_other_cfg(self.config) config.merge_from_list(ckpt_cmd_opts) config.merge_from_list(eval_cmd_opts) ppo_cfg = config.TRAINER.RL.PPO config.TASK_CONFIG.defrost() config.TASK_CONFIG.DATASET.SPLIT = "val" agent_sensors = ppo_cfg.sensors.strip().split(",") config.TASK_CONFIG.SIMULATOR.AGENT_0.SENSORS = agent_sensors if self.video_option: config.TASK_CONFIG.TASK.MEASUREMENTS.append("TOP_DOWN_MAP") config.TASK_CONFIG.TASK.MEASUREMENTS.append("COLLISIONS") config.freeze() logger.info(f"env config: {config}") self.envs = construct_envs(config, NavRLEnv) self._setup_actor_critic_agent(ppo_cfg) self.agent.load_state_dict(ckpt_dict["state_dict"]) self.actor_critic = self.agent.actor_critic observations = self.envs.reset() batch = batch_obs(observations) for sensor in batch: batch[sensor] = batch[sensor].to(self.device) current_episode_reward = torch.zeros(self.envs.num_envs, 1, device=self.device) test_recurrent_hidden_states = torch.zeros(ppo_cfg.num_processes, ppo_cfg.hidden_size, device=self.device) not_done_masks = torch.zeros(ppo_cfg.num_processes, 1, device=self.device) stats_episodes = dict() # dict of dicts that stores stats per episode rgb_frames = [[] ] * ppo_cfg.num_processes # type: List[List[np.ndarray]] if self.video_option: os.makedirs(ppo_cfg.video_dir, exist_ok=True) while (len(stats_episodes) < ppo_cfg.count_test_episodes and self.envs.num_envs > 0): current_episodes = self.envs.current_episodes() with torch.no_grad(): _, actions, _, test_recurrent_hidden_states = self.actor_critic.act( batch, test_recurrent_hidden_states, not_done_masks, deterministic=False, ) outputs = self.envs.step([a[0].item() for a in actions]) observations, rewards, dones, infos = [ list(x) for x in zip(*outputs) ] batch = batch_obs(observations) for sensor in batch: batch[sensor] = batch[sensor].to(self.device) not_done_masks = torch.tensor( [[0.0] if done else [1.0] for done in dones], dtype=torch.float, device=self.device, ) rewards = torch.tensor(rewards, dtype=torch.float, device=self.device).unsqueeze(1) current_episode_reward += rewards next_episodes = self.envs.current_episodes() envs_to_pause = [] n_envs = self.envs.num_envs for i in range(n_envs): if ( next_episodes[i].scene_id, next_episodes[i].episode_id, ) in stats_episodes: envs_to_pause.append(i) # episode ended if not_done_masks[i].item() == 0: episode_stats = dict() episode_stats["spl"] = infos[i]["spl"] episode_stats["success"] = int(infos[i]["spl"] > 0) episode_stats["reward"] = current_episode_reward[i].item() current_episode_reward[i] = 0 # use scene_id + episode_id as unique id for storing stats stats_episodes[( current_episodes[i].scene_id, current_episodes[i].episode_id, )] = episode_stats if self.video_option: generate_video( ppo_cfg, rgb_frames[i], current_episodes[i].episode_id, cur_ckpt_idx, infos[i]["spl"], writer, ) rgb_frames[i] = [] # episode continues elif self.video_option: frame = observations_to_image(observations[i], infos[i]) rgb_frames[i].append(frame) # pausing self.envs with no new episode if len(envs_to_pause) > 0: state_index = list(range(self.envs.num_envs)) for idx in reversed(envs_to_pause): state_index.pop(idx) self.envs.pause_at(idx) # indexing along the batch dimensions test_recurrent_hidden_states = test_recurrent_hidden_states[ state_index] not_done_masks = not_done_masks[state_index] current_episode_reward = current_episode_reward[state_index] for k, v in batch.items(): batch[k] = v[state_index] if self.video_option: rgb_frames = [rgb_frames[i] for i in state_index] aggregated_stats = dict() for stat_key in next(iter(stats_episodes.values())).keys(): aggregated_stats[stat_key] = sum( [v[stat_key] for v in stats_episodes.values()]) num_episodes = len(stats_episodes) episode_reward_mean = aggregated_stats["reward"] / num_episodes episode_spl_mean = aggregated_stats["spl"] / num_episodes episode_success_mean = aggregated_stats["success"] / num_episodes logger.info( "Average episode reward: {:.6f}".format(episode_reward_mean)) logger.info( "Average episode success: {:.6f}".format(episode_success_mean)) logger.info("Average episode SPL: {:.6f}".format(episode_spl_mean)) writer.add_scalars( "eval_reward", {"average reward": episode_reward_mean}, cur_ckpt_idx, ) writer.add_scalars("eval_SPL", {"average SPL": episode_spl_mean}, cur_ckpt_idx) writer.add_scalars( "eval_success", {"average success": episode_success_mean}, cur_ckpt_idx, )