def draw_and_send(self): self.classify() img = cv.CloneMat(self.feature_extractor.image_cv) #draw classified points. colors = {r3d.POSITIVE: [0,255,0], r3d.NEGATIVE: [0,0,255]} r3d.draw_labeled_points(img, self.classified_dataset) #draw labeled data. r3d.draw_labeled_points(img, self.dataset, colors[r3d.POSITIVE], colors[r3d.NEGATIVE]) #draw latest addition and its label. r3d.draw_points(img, self.last_added['pt'], colors[self.last_added['l']], 4) self.image_pub.publish(img, self.feature_extractor.calibration_obj)
def draw_and_send(self): self.classify() img = cv.CloneMat(self.feature_extractor.image_cv) #draw classified points. colors = {r3d.POSITIVE: [0, 255, 0], r3d.NEGATIVE: [0, 0, 255]} r3d.draw_labeled_points(img, self.classified_dataset) #draw labeled data. r3d.draw_labeled_points(img, self.dataset, colors[r3d.POSITIVE], colors[r3d.NEGATIVE]) #draw latest addition and its label. r3d.draw_points(img, self.last_added['pt'], colors[self.last_added['l']], 4) self.image_pub.publish(img, self.feature_extractor.calibration_obj)
roslib.load_manifest("hai_sandbox") import rospy import hai_sandbox.recognize_3d as r3d import hrl_lib.util as ut import cv import sys fname = sys.argv[1] pkl = ut.load_pickle(fname) image_name = pkl["image"] img = cv.LoadImageM(image_name) # Draw the center r3d.draw_points(img, pkl["center"], [255, 0, 0], 6, 2) if pkl.has_key("pos"): pos_exp = pkl["pos"] neg_exp = pkl["neg"] # Draw points tried r3d.draw_points(img, pos_exp, [50, 255, 0], 9, 1) r3d.draw_points(img, neg_exp, [50, 0, 255], 9, 1) if pkl.has_key("pos_pred"): pos_pred = pkl["pos_pred"] neg_pred = pkl["neg_pred"] # Draw prediction r3d.draw_points(img, pos_pred, [255, 204, 51], 3, -1) r3d.draw_points(img, neg_pred, [51, 204, 255], 3, -1)