def make_policy(): """Returns one copy of the model.""" artifact = {} if cfg.intruction_repr == 'language': trainable_encoder = cfg.trainable_encoder print('The encoder is trainable: {}'.format(trainable_encoder)) embedding = tf.get_variable( name='word_embedding', shape=(cfg.vocab_size, cfg.embedding_size), dtype=tf.float32, trainable=trainable_encoder) _, goal_embedding = encoder( self.word_inputs, embedding, cfg.encoder_n_unit, trainable=trainable_encoder) artifact['embedding'] = embedding elif cfg.intruction_repr == 'one_hot': print('Goal input for one-hot max len {}'.format( cfg.max_sequence_length)) one_hot_goal = tf.one_hot(self.word_inputs, cfg.max_sequence_length) one_hot_goal.set_shape([None, cfg.max_sequence_length]) layer_cfg = [cfg.max_sequence_length // 8, cfg.encoder_n_unit] goal_embedding = stack_dense_layer(one_hot_goal, layer_cfg) else: raise ValueError('Unrecognized instruction type: {}'.format( cfg.instruction_repr)) artifact['goal_embedding'] = goal_embedding all_q = self.build_q_factor_discrete(cfg, goal_embedding) predict_action = tf.argmax(all_q, axis=-1) action = tf.placeholder(shape=None, dtype=tf.int32) action_onehot = tf.one_hot( action, cfg.ac_dim[0], dtype=tf.float32) q = tf.reduce_sum( tf.multiply(all_q, action_onehot), axis=1) artifact.update( { 'all_q': all_q, 'predict_action': predict_action, 'action_ph': action, 'action_onehot': action_onehot, 'q': q } ) return artifact
def make_policy(): """Build one copy of the model.""" artifact = {} if cfg.intruction_repr == 'language': trainable_encoder = cfg.trainable_encoder print('The encoder is trainable: {}'.format(trainable_encoder)) embedding = tf.get_variable(name='word_embedding', shape=(cfg.vocab_size, cfg.embedding_size), dtype=tf.float32, trainable=trainable_encoder) _, goal_embedding = encoder(self.word_inputs, embedding, cfg.encoder_n_unit, trainable=trainable_encoder) artifact['embedding'] = embedding elif cfg.intruction_repr == 'one_hot': print('Goal input for one-hot max len {}'.format( cfg.max_sequence_length)) one_hot_goal = tf.one_hot(self.word_inputs, cfg.max_sequence_length) one_hot_goal.set_shape([None, cfg.max_sequence_length]) layer_cfg = [cfg.max_sequence_length // 8, cfg.encoder_n_unit] goal_embedding = stack_dense_layer(one_hot_goal, layer_cfg) else: raise ValueError('Unrecognized instruction type: {}'.format( cfg.instruction_repr)) artifact['goal_embedding'] = goal_embedding if cfg.action_type == 'perfect': print('using perfect action Q function...') all_q, predict_object, predict_object_action = self.build_q_perfect( cfg, goal_embedding) predict_action = tf.stack( [predict_object, predict_object_action], axis=1) action = tf.placeholder(shape=(None, 2), dtype=tf.int32) stacked_indices = tf.concat([ tf.expand_dims(tf.range(0, tf.shape(action)[0]), axis=1), action ], axis=1) q = tf.gather_nd(all_q, stacked_indices) artifact.update({ 'all_q': all_q, 'predict_object': predict_object, 'predict_object_action': predict_object_action, 'predict_action': predict_action, 'action_ph': action, 'q': q, }) elif cfg.action_type == 'discrete': print('using discrete action Q function...') ac_dim = cfg.per_input_ac_dim[0] all_q = self.build_q_discrete(goal_embedding, ac_dim) predict_action = tf.argmax(all_q, axis=-1) action = tf.placeholder(shape=None, dtype=tf.int32) action_onehot = tf.one_hot(action, ac_dim, dtype=tf.float32) q = tf.reduce_sum(tf.multiply(all_q, action_onehot), axis=1) artifact.update({ 'all_q': all_q, 'predict_action': predict_action, 'action_ph': action, 'action_onehot': action_onehot, 'q': q, }) else: raise ValueError('Unrecognized action type: {}'.format( cfg.action_type)) return artifact