'weight': 1.0 }, { 'name': 'carbon', 'strategy': 'cumulative_maximize', # target the max cumulative value 'weight': 1.0 }, { 'name': 'cost proxy', 'strategy': 'cumulative_minimize', # target the min cumulative value 'weight': 1.0 }, ] #----------- STEP 3: Optimize (annealing over objective function) ---------# best, optimal_stand_rxs, vars_over_time = schedule(stand_data, axis_map, valid_mgmts, steps=250000, report_interval=5000, temp_min=0.0006, temp_max=2, live_plot=True) #----------- STEP 4: output results ---------------------------------------# print_results(axis_map, vars_over_time) write_stand_mgmt_csv(optimal_stand_rxs, axis_map, filename="_results.csv")
if best < best_start: best_start = best best_mgmts = optimal_stand_rxs # Now run the full schedule best, optimal_stand_rxs, vars_over_time = schedule( stand_data, axis_map, valid_mgmts, steps=295000, report_interval=5000, temp_min=0.00005, temp_max=20.0, starting_mgmts=best_mgmts, live_plot=True) #----------- STEP 4: output results ---------------------------------------#, print_results(axis_map, vars_over_time) with open("results/results.csv", 'a') as fh: for i, data in enumerate(vars_over_time.tolist()): row = [2013 + i * 5, climate] + data fh.write(",".join([str(x) for x in row])) fh.write("\n") write_stand_mgmt_csv(optimal_stand_rxs, axis_map, filename="results/%s_stands_rx.csv" % climate, climate=climate) #import ipdb; ipdb.set_trace()
temp_max=5.0 ) if best < best_start: best_start = best best_mgmts = optimal_stand_rxs # Now run the full schedule best, optimal_stand_rxs, vars_over_time = schedule( stand_data, axis_map, valid_mgmts, steps=295000, report_interval=5000, temp_min=0.00005, temp_max=20.0, starting_mgmts=best_mgmts, live_plot=True ) #----------- STEP 4: output results ---------------------------------------#, print_results(axis_map, vars_over_time) with open("results/results.csv", 'a') as fh: for i, data in enumerate(vars_over_time.tolist()): row = [2013 + i*5, climate] + data fh.write(",".join([str(x) for x in row])) fh.write("\n") write_stand_mgmt_csv(optimal_stand_rxs, axis_map, filename="results/%s_stands_rx.csv" % climate, climate=climate) #import ipdb; ipdb.set_trace()
), 'weight': 1.0 }, { 'name': 'carbon', 'strategy': 'cumulative_maximize', # target the max cumulative value 'weight': 1.0 }, { 'name': 'cost proxy', 'strategy': 'cumulative_minimize', # target the min cumulative value 'weight': 1.0 }, ] #----------- STEP 3: Optimize (annealing over objective function) ---------# best, optimal_stand_rxs, vars_over_time = schedule( stand_data, axis_map, valid_mgmts, steps=250000, report_interval=5000, temp_min=0.0006, temp_max=2, live_plot=True ) #----------- STEP 4: output results ---------------------------------------# print_results(axis_map, vars_over_time) write_stand_mgmt_csv(optimal_stand_rxs, axis_map, filename="_results.csv")