Example #1
0
 
 # Sparse label to 1-of-K categorical label
 tr_y = sparse_to_categorical(tr_y, n_out)
 va_y = sparse_to_categorical(va_y, n_out)
 te_y = sparse_to_categorical(te_y, n_out)
 
 # Build model
 lay_in = InputLayer(in_shape=(n_in,))
 a = Dense(n_out=n_hid, act='relu')(lay_in)
 a = Dropout(p_drop=0.2)(a)
 a = Dense(n_out=n_hid, act='relu')(a)
 a = Dropout(p_drop=0.2)(a)
 lay_out = Dense(n_out=n_out, act='softmax')(a)
 
 md = Model(in_layers=[lay_in], out_layers=[lay_out])
 md.compile()
 md.summary()
 
 # Callbacks
 dump_fd = 'train_on_batch_models'
 if not os.path.exists(dump_fd): os.makedirs(dump_fd)
 save_model = SaveModel(dump_fd=dump_fd, call_freq=200, type='iter')
 
 validation = Validation(tr_x=tr_x, tr_y=tr_y, 
                         va_x=None, va_y=None, 
                         te_x=te_x, te_y=te_y, 
                         batch_size=500, 
                         metrics=['categorical_error'], 
                         call_freq=200, 
                         type='iter')
 
# sparse label to 1-of-K categorical label
tr_y = sparse_to_categorical(tr_y, n_out)
va_y = sparse_to_categorical(va_y, n_out)
te_y = sparse_to_categorical(te_y, n_out)

### Build model

lay_in = InputLayer(in_shape=(n_in, ))
a = Dense(n_out=n_hid, act='relu', name='dense1')(lay_in)
a = Dropout(p_drop=0.2)(a)
a = Dense(n_out=n_hid, act='relu', name='dense2')(a)
a = Dropout(p_drop=0.2)(a)
lay_out = Dense(n_out=n_out, act='softmax')(a)

md = Model(in_layers=[lay_in], out_layers=[lay_out])
md.compile()
md.summary()

# observe forward
observe_nodes = [
    md.find_layer('dense1').output_,
    md.find_layer('dense2').output_
]
f_forward = md.get_observe_forward_func(observe_nodes)
print md.run_function(func=f_forward, z=[te_x], batch_size=500, tr_phase=0.)

# observe backward
md.set_gt_nodes(target_dim_list=[2])
loss_node = obj.categorical_crossentropy(md.out_nodes_[0], md.gt_nodes_[0])
gparams = K.grad(loss_node + md.reg_value_, md.params_)
observe_nodes = gparams
Example #3
0
def train():
    # load data
    batch_size = 128
    tr_X, tr_y, va_X, va_y, te_X, te_y = pp_data.load_data()
    n_batches = int(tr_X.shape[0] / batch_size)

    # normalize data between [-1,1]
    tr_X = (tr_X - 0.5) * 2
    tr_X = tr_X.reshape((50000, 1, 28, 28))
    print tr_X.shape

    # generator
    a0 = InputLayer(100)
    a1 = Dense(128 * 7 * 7, act='linear')(a0)
    a1 = BN(axis=0)(a1)
    a1 = Reshape(out_shape=(128, 7, 7))(a1)
    a1 = Convolution2D(64, 5, 5, act='linear', border_mode=(2, 2))(a1)
    a1 = BN(axis=(0, 2, 3))(a1)
    a1 = Activation('leaky_relu')(a1)
    a1 = UpSampling2D(size=(2, 2))(a1)
    a1 = Convolution2D(32, 5, 5, act='linear', border_mode=(2, 2))(a1)
    a1 = BN(axis=(0, 2, 3))(a1)
    a1 = Activation('leaky_relu')(a1)
    a1 = UpSampling2D(size=(2, 2))(a1)
    a8 = Convolution2D(1, 5, 5, act='tanh', border_mode=(2, 2), name='a8')(a1)

    g = Model([a0], [a8])
    g.compile()
    g.summary()

    # discriminator
    b0 = InputLayer((1, 28, 28), name='b0')
    b1 = Convolution2D(64, 5, 5, act='relu', border_mode=(0, 0), name='b1')(b0)
    b1 = MaxPooling2D(pool_size=(2, 2))(b1)
    b1 = Convolution2D(128, 5, 5, act='relu', border_mode=(0, 0))(b1)
    b1 = MaxPooling2D(pool_size=(2, 2))(b1)
    b1 = Flatten()(b1)
    b8 = Dense(1, act='sigmoid')(b1)
    d = Model([b0], [b8])
    d.compile()
    d.summary()

    # discriminator on generator
    d_on_g = Model()
    d.set_trainability(False)
    d_on_g.add_models([g, d])
    d.set_trainability(True)
    d_on_g.joint_models('a8', 'b0')
    d_on_g.compile()
    d_on_g.summary()

    # optimizer
    opt_d = Adam(1e-4)
    opt_g = Adam(1e-4)

    # optimization function
    f_train_d = d.get_optimization_func(target_dims=[2],
                                        loss_func='binary_crossentropy',
                                        optimizer=opt_d,
                                        clip=None)
    f_train_g = d_on_g.get_optimization_func(target_dims=[2],
                                             loss_func='binary_crossentropy',
                                             optimizer=opt_g,
                                             clip=None)

    noise = np.zeros((batch_size, 100))
    for epoch in range(100):
        print epoch
        for index in range(n_batches):
            # concatenate generated img and real image to train discriminator.
            noise = np.random.uniform(-1, 1, (batch_size, 100))
            batch_x = tr_X[index * batch_size:(index + 1) * batch_size]
            batch_gx = g.predict(noise)
            batch_x_all = np.concatenate((batch_x, batch_gx))

            # assign real img label as 1, generated img label as 0
            batch_y_all = np.array([1] * batch_size + [0] * batch_size)
            batch_y_all = batch_y_all.reshape((batch_y_all.shape[0], 1))

            # save out generated img
            if index % 50 == 0:
                image = pp_data.combine_images(batch_gx)
                image = image * 127.5 + 127.5
                if not os.path.exists("img_dcgan"): os.makedirs("img_dcgan")
                Image.fromarray(image.astype(
                    np.uint8)).save("img_dcgan/" + str(epoch) + "_" +
                                    str(index) + ".png")

            # train discriminator
            d_loss = d.train_on_batch(f_train_d, batch_x_all, batch_y_all)

            # assign generate img label as 1, so as to deceive discriminator
            noise = np.random.uniform(-1, 1, (batch_size, 100))
            batch_y_all = np.array([1] * batch_size)
            batch_y_all = batch_y_all.reshape((batch_y_all.shape[0], 1))

            # train generator
            g_loss = d_on_g.train_on_batch(f_train_g, noise, batch_y_all)
            print index, "d_loss:", d_loss, "\tg_loss:", g_loss
def train():

    # create empty folders in workspace
    create_folders()

    # get dev & eva data
    tr_X, tr_y, _, _, _, _ = pp_dev_data.GetSegData(dev_fe_fd,
                                                    agg_num,
                                                    hop,
                                                    fold=None)
    te_X, te_na_list = pp_eva_data.GetEvaSegData(eva_fe_fd, agg_num, hop)

    [n_songs, n_chunks, _, n_in] = tr_X.shape
    print tr_X.shape, tr_y.shape
    print te_X.shape

    # model
    lay_in0 = InputLayer(
        (n_chunks, agg_num, n_in),
        name='in0')  # shape: (n_songs, n_chunk, agg_num, n_in)
    lay_a1 = Flatten(3, name='a1')(
        lay_in0)  # shape: (n_songs, n_chunk, agg_num*n_in)
    lay_a2 = Dense(n_hid,
                   act='relu')(lay_a1)  # shape: (n_songs, n_chunk, n_hid)
    lay_a3 = Dropout(0.2)(lay_a2)
    lay_a4 = Dense(n_hid, act='relu')(lay_a3)
    lay_a5 = Dropout(0.2)(lay_a4)
    lay_a6 = Dense(n_hid, act='relu')(lay_a5)
    lay_a7 = Dropout(0.2)(lay_a6)
    lay_a8 = Dense(n_out, act='sigmoid', b_init=-1,
                   name='a8')(lay_a7)  # shape: (n_songs, n_chunk, n_out)

    md = Model(in_layers=[lay_in0], out_layers=[lay_a8], any_layers=[])
    md.compile()
    md.summary()

    # callback, write out dection scores to .txt each epoch
    dump_fd = cfg.scrap_fd + '/Results_eva/bob_eer'
    print_scores = cb_eer.PrintScoresBagOfBlocks(te_X,
                                                 te_na_list,
                                                 dump_fd,
                                                 call_freq=1)

    # callback, print loss each epoch
    validation = Validation(tr_x=tr_X,
                            tr_y=tr_y,
                            va_x=None,
                            va_y=None,
                            te_x=None,
                            te_y=None,
                            metrics=[loss_func],
                            call_freq=1,
                            dump_path=None)

    # callback, save model every N epochs
    save_model = SaveModel(dump_fd=cfg.scrap_fd + '/Md_eva_bob', call_freq=10)

    # combine all callbacks
    callbacks = [validation, save_model, print_scores]

    # optimizer
    optimizer = Adam(2e-4)

    # fit model
    md.fit(x=tr_X,
           y=tr_y,
           batch_size=10,
           n_epochs=301,
           loss_func=loss_func,
           optimizer=optimizer,
           callbacks=callbacks)
def train(args):
    workspace = cfg.workspace
    te_fold = cfg.te_fold
    n_events = args.n_events
    snr = args.snr

    feature_dir = os.path.join(workspace, "features", "logmel",
                               "n_events=%d" % n_events)
    yaml_dir = os.path.join(workspace, "mixed_audio", "n_events=%d" % n_events)
    (tr_x, tr_at_y, tr_sed_y, tr_na_list, te_x, te_at_y, te_sed_y,
     te_na_list) = pp_data.load_data(feature_dir=feature_dir,
                                     yaml_dir=yaml_dir,
                                     te_fold=te_fold,
                                     snr=snr,
                                     is_scale=is_scale)

    print(tr_x.shape, tr_at_y.shape)
    print(te_x.shape, te_at_y.shape)
    (_, n_time, n_freq) = tr_x.shape
    n_out = len(cfg.events)

    if False:
        for e in tr_x:
            plt.matshow(e.T, origin='lower', aspect='auto')
            plt.show()

    # Build model.
    lay_in = InputLayer(in_shape=(n_time, n_freq))

    a = Reshape((1, n_time, n_freq))(lay_in)
    a = Conv2D(n_outfmaps=64,
               n_row=3,
               n_col=5,
               act='linear',
               strides=(1, 1),
               border_mode=(1, 2))(a)
    a = BN(axis=(0, 2, 3))(a)
    a = Activation('relu')(a)
    a = Conv2D(n_outfmaps=64,
               n_row=3,
               n_col=5,
               act='linear',
               strides=(1, 1),
               border_mode=(1, 2))(a)
    a = BN(axis=(0, 2, 3))(a)
    a = Activation('relu')(a)
    a = Dropout(p_drop=0.2)(a)

    a = Conv2D(n_outfmaps=64,
               n_row=3,
               n_col=5,
               act='linear',
               strides=(1, 1),
               border_mode=(1, 2))(a)
    a = BN(axis=(0, 2, 3))(a)
    a = Activation('relu')(a)
    a = Conv2D(n_outfmaps=64,
               n_row=3,
               n_col=5,
               act='linear',
               strides=(1, 1),
               border_mode=(1, 2))(a)
    a = BN(axis=(0, 2, 3))(a)
    a = Activation('relu')(a)
    a = Dropout(p_drop=0.2)(a)

    a = Conv2D(n_outfmaps=64,
               n_row=3,
               n_col=5,
               act='linear',
               strides=(1, 1),
               border_mode=(1, 2))(a)
    a = BN(axis=(0, 2, 3))(a)
    a = Activation('relu')(a)
    a = Conv2D(n_outfmaps=64,
               n_row=3,
               n_col=5,
               act='linear',
               strides=(1, 1),
               border_mode=(1, 2))(a)
    a = BN(axis=(0, 2, 3))(a)
    a = Activation('relu')(a)
    a = Dropout(p_drop=0.2)(a)

    a = Conv2D(n_outfmaps=n_out,
               n_row=1,
               n_col=1,
               act='sigmoid',
               border_mode=(0, 0),
               name='seg_masks')(a)

    a8 = Lambda(_global_avg_pooling, name='a8')(a)

    md = Model([lay_in], [a8])
    md.compile()
    md.summary(is_logging=True)

    # Callbacks.
    md_dir = os.path.join(workspace, "models", pp_data.get_filename(__file__),
                          "n_events=%d" % n_events, "fold=%d" % te_fold,
                          "snr=%d" % snr)
    pp_data.create_folder(md_dir)
    save_model = SaveModel(md_dir, call_freq=50, type='iter', is_logging=True)
    validation = Validation(te_x=te_x,
                            te_y=te_at_y,
                            batch_size=50,
                            call_freq=50,
                            metrics=['binary_crossentropy'],
                            dump_path=None,
                            is_logging=True)

    callbacks = [save_model, validation]

    observe_nodes = [md.find_layer('seg_masks').output_]
    f_forward = md.get_observe_forward_func(observe_nodes)

    # Generator.
    tr_gen = DataGenerator(batch_size=32, type='train')
    eva_gen = DataGenerator2(batch_size=32, type='test')

    # Train.
    loss_ary = []
    t1 = time.time()
    optimizer = Adam(1e-3)
    for (batch_x, batch_y) in tr_gen.generate(xs=[tr_x], ys=[tr_at_y]):
        if md.iter_ % 50 == 0:
            logging.info("iter: %d tr_loss: %f time: %s" % (
                md.iter_,
                np.mean(loss_ary),
                time.time() - t1,
            ))
            t1 = time.time()
            loss_ary = []
        # if md.iter_ % 200 == 0:
        # write_out_at_sed(md, eva_gen, f_forward, te_x, te_at_y, te_sed_y, n_events, snr, te_fold)
        if md.iter_ == 5001:
            break
        loss = md.train_on_batch(batch_x,
                                 batch_y,
                                 loss_func='binary_crossentropy',
                                 optimizer=optimizer,
                                 callbacks=callbacks)
        loss_ary.append(loss)
Example #6
0
def train(args):
    cpickle_dir = args.cpickle_dir
    workspace = args.workspace

    # Path of hdf5 data
    bal_train_hdf5_path = os.path.join(cpickle_dir, "bal_train.h5")
    unbal_train_hdf5_path = os.path.join(cpickle_dir, "unbal_train.h5")
    eval_hdf5_path = os.path.join(cpickle_dir, "eval.h5")

    # Load data
    t1 = time.time()
    (tr_x1, tr_y1, tr_id_list1) = pp_data.load_data(bal_train_hdf5_path)
    (tr_x2, tr_y2, tr_id_list2) = pp_data.load_data(unbal_train_hdf5_path)
    tr_x = np.concatenate((tr_x1, tr_x2))
    tr_y = np.concatenate((tr_y1, tr_y2))
    tr_id_list = tr_id_list1 + tr_id_list2

    (te_x, te_y, te_id_list) = pp_data.load_data(eval_hdf5_path)
    logging.info("Loading data time: %s s" % (time.time() - t1))

    logging.info(tr_x1.shape, tr_x2.shape)
    logging.info("tr_x.shape: %s" % (tr_x.shape, ))

    (_, n_time, n_freq) = tr_x.shape

    # Build model
    n_hid = 500
    n_out = tr_y.shape[1]

    lay_in = InputLayer(in_shape=(n_time, n_freq))
    a = Dense(n_out=n_hid, act='relu')(lay_in)
    a = Dropout(p_drop=0.2)(a)
    a = Dense(n_out=n_hid, act='relu')(a)
    a = Dropout(p_drop=0.2)(a)
    a = Dense(n_out=n_hid, act='relu')(a)
    a = Dropout(p_drop=0.2)(a)
    cla = Dense(n_out=n_out, act='sigmoid', name='cla')(a)
    att = Dense(n_out=n_out, act='softmax', name='att')(a)

    # Attention
    lay_out = Lambda(_attention)([cla, att])

    # Compile model
    md = Model(in_layers=[lay_in], out_layers=[lay_out])
    md.compile()
    md.summary(is_logging=True)

    # Save model every several iterations
    call_freq = 1000
    dump_fd = os.path.join(workspace, "models", pp_data.get_filename(__file__))
    pp_data.create_folder(dump_fd)
    save_model = SaveModel(dump_fd=dump_fd,
                           call_freq=call_freq,
                           type='iter',
                           is_logging=True)

    # Callbacks function
    callbacks = [save_model]

    batch_size = 500
    tr_gen = RatioDataGenerator(batch_size=batch_size, type='train')

    # Optimization method
    optimizer = Adam(lr=args.lr)

    # Train
    stat_dir = os.path.join(workspace, "stats", pp_data.get_filename(__file__))
    pp_data.create_folder(stat_dir)
    prob_dir = os.path.join(workspace, "probs", pp_data.get_filename(__file__))
    pp_data.create_folder(prob_dir)

    tr_time = time.time()
    for (tr_batch_x, tr_batch_y) in tr_gen.generate(xs=[tr_x], ys=[tr_y]):
        # Compute stats every several interations
        if md.iter_ % call_freq == 0:
            # Stats of evaluation dataset
            t1 = time.time()
            te_err = eval(md=md,
                          x=te_x,
                          y=te_y,
                          out_dir=os.path.join(stat_dir, "test"),
                          out_probs_dir=os.path.join(prob_dir, "test"))
            logging.info("Evaluate test time: %s" % (time.time() - t1, ))

            # Stats of training dataset
            t1 = time.time()
            tr_bal_err = eval(md=md,
                              x=tr_x1,
                              y=tr_y1,
                              out_dir=os.path.join(stat_dir, "train_bal"),
                              out_probs_dir=None)
            logging.info("Evaluate tr_bal time: %s" % (time.time() - t1, ))

        # Update params
        (tr_batch_x,
         tr_batch_y) = pp_data.transform_data(tr_batch_x, tr_batch_y)
        md.train_on_batch(batch_x=tr_batch_x,
                          batch_y=tr_batch_y,
                          loss_func='binary_crossentropy',
                          optimizer=optimizer,
                          callbacks=callbacks)

        # Stop training when maximum iteration achieves
        if md.iter_ == call_freq * 31:
            break
Example #7
0
def train(args):
    workspace = args.workspace
    cla_mapping = args.cla_mapping

    # Load data.
    t1 = time.time()
    tr_pack_path = os.path.join(workspace, "packed_features", "logmel",
                                "training.h5")
    te_pack_path = os.path.join(workspace, "packed_features", "logmel",
                                "testing.h5")

    with h5py.File(tr_pack_path, 'r') as hf:
        tr_na_list = list(hf.get('na_list'))
        tr_x = np.array(hf.get('x'))
        tr_y = np.array(hf.get('y'))

    with h5py.File(te_pack_path, 'r') as hf:
        te_na_list = list(hf.get('na_list'))
        te_x = np.array(hf.get('x'))
        te_y = np.array(hf.get('y'))
    logging.info("Loading data time: %s" % (time.time() - t1, ))

    # Scale.
    t1 = time.time()
    scaler_path = os.path.join(workspace, "scalers", "logmel",
                               "training.scaler")
    scaler = pickle.load(open(scaler_path, 'rb'))
    tr_x = pp_data.do_scaler_on_x3d(tr_x, scaler)
    te_x = pp_data.do_scaler_on_x3d(te_x, scaler)
    logging.info("Scale time: %s" % (time.time() - t1, ))

    logging.info("tr_x: %s %s" % (tr_x.shape, tr_x.dtype))
    logging.info("tr_y: %s %s" % (tr_y.shape, tr_y.dtype))
    logging.info("y: 1-of-4 representation: %s" % (cfg.events + ['bg'], ))

    # Build model.
    (_, n_time, n_freq) = tr_x.shape
    n_out = len(cfg.events) + 1

    in0 = InputLayer(in_shape=(n_time, n_freq))
    a1 = Reshape((1, n_time, n_freq))(in0)

    a1 = Conv2D(n_outfmaps=64,
                n_row=3,
                n_col=3,
                act='linear',
                border_mode=(1, 1))(a1)
    a1 = BN(axis=(0, 2, 3))(a1)
    a1 = Activation('relu')(a1)
    a1 = Conv2D(n_outfmaps=64,
                n_row=3,
                n_col=3,
                act='linear',
                border_mode=(1, 1))(a1)
    a1 = BN(axis=(0, 2, 3))(a1)
    a1 = Activation('relu')(a1)
    a1 = Dropout(0.3)(a1)

    a1 = Conv2D(n_outfmaps=64,
                n_row=3,
                n_col=3,
                act='linear',
                border_mode=(1, 1))(a1)
    a1 = BN(axis=(0, 2, 3))(a1)
    a1 = Activation('relu')(a1)
    a1 = Conv2D(n_outfmaps=64,
                n_row=3,
                n_col=3,
                act='linear',
                border_mode=(1, 1))(a1)
    a1 = BN(axis=(0, 2, 3))(a1)
    a1 = Activation('relu')(a1)
    a1 = Dropout(0.3)(a1)

    a1 = Conv2D(n_outfmaps=64,
                n_row=3,
                n_col=3,
                act='linear',
                border_mode=(1, 1))(a1)
    a1 = BN(axis=(0, 2, 3))(a1)
    a1 = Activation('relu')(a1)
    a1 = Conv2D(n_outfmaps=64,
                n_row=3,
                n_col=3,
                act='linear',
                border_mode=(1, 1))(a1)
    a1 = BN(axis=(0, 2, 3))(a1)
    a1 = Activation('relu')(a1)
    a1 = Dropout(0.3)(a1)

    a1 = Conv2D(n_outfmaps=64,
                n_row=3,
                n_col=3,
                act='linear',
                border_mode=(1, 1))(a1)
    a1 = BN(axis=(0, 2, 3))(a1)
    a1 = Activation('relu')(a1)
    a1 = Conv2D(n_outfmaps=64,
                n_row=3,
                n_col=3,
                act='linear',
                border_mode=(1, 1))(a1)
    a1 = BN(axis=(0, 2, 3))(a1)
    a1 = Activation('relu')(a1)
    a1 = Dropout(0.3)(a1)

    # Segmentation mask for 'babycry', 'glassbreak' and 'gunshot'.
    a1 = Conv2D(n_outfmaps=len(cfg.events),
                n_row=1,
                n_col=1,
                act='sigmoid',
                border_mode=(0, 0))(a1)

    # Extend segmentation mask to 'babycry', 'glassbreak', 'gunshot' and 'background'.
    a1 = Lambda(_seg_mask_ext_bg, name='seg_masks')(a1)

    # Classification mapping.
    cla_mapping = args.cla_mapping

    if cla_mapping == 'global_rank_pooling':
        weight1d = np.power(r * np.ones(120 * 64), np.arange(120 * 64))
        a8 = Lambda(_global_rank_pooling, weight1d=weight1d, name='a5')(a1)
    elif cla_mapping == 'global_max_pooling':
        a8 = Lambda(_global_max_pooling)(a1)
    elif cla_mapping == 'global_avg_pooling':
        a8 = Lambda(_global_avg_pooling)(a1)
    else:
        raise Exception("Incorrect cla_mapping!")

    md = Model([in0], [a8])
    md.compile()
    md.summary(is_logging=True)

    # Callbacks.
    md_dir = os.path.join(workspace, "models", pp_data.get_filename(__file__))
    pp_data.create_folder(md_dir)
    save_model = SaveModel(md_dir, call_freq=100, type='iter')
    validation = Validation(te_x=te_x,
                            te_y=te_y,
                            batch_size=100,
                            call_freq=50,
                            metrics=['binary_crossentropy'],
                            dump_path=None,
                            is_logging=True)
    callbacks = [save_model, validation]

    # Train.
    generator = DataGenerator(batch_size=20, type='train')
    loss_ary = []
    t1 = time.time()
    optimizer = Adam(1e-4)
    for (batch_x, batch_y) in generator.generate(xs=[tr_x], ys=[tr_y]):
        np.set_printoptions(threshold=np.nan,
                            linewidth=1000,
                            precision=2,
                            suppress=True)
        loss = md.train_on_batch(batch_x,
                                 batch_y,
                                 loss_func='binary_crossentropy',
                                 optimizer=optimizer,
                                 callbacks=callbacks)
        loss_ary.append(loss)
        if md.iter_ % 50 == 0:  # Evalute training loss every several iterations.
            logging.info("iter: %d, tr loss: %d" %
                         (md.iter_, np.mean(loss_ary)))
            logging.info("time: %s" % (time.time() - t1, ))
            t1 = time.time()
            loss_ary = []
        if md.iter_ == 10001:  # Stop after several iterations.
            break
Example #8
0
def train():

    # create empty folders in workspace
    create_folders()

    # prepare data
    tr_X, tr_y, _, va_X, va_y, va_na_list = pp_dev_data.GetSegData(
        fe_fd, agg_num, hop, fold)
    [n_songs, n_chunks, _, n_in] = tr_X.shape

    print tr_X.shape, tr_y.shape
    print va_X.shape, va_y.shape

    # model
    # classifier
    lay_in0 = InputLayer(
        (n_chunks, agg_num, n_in),
        name='in0')  # shape: (n_songs, n_chunk, agg_num, n_in)
    lay_a1 = Flatten(3, name='a1')(
        lay_in0)  # shape: (n_songs, n_chunk, agg_num*n_in)
    lay_a2 = Dense(n_hid,
                   act='relu')(lay_a1)  # shape: (n_songs, n_chunk, n_hid)
    lay_a3 = Dropout(0.2)(lay_a2)
    lay_a4 = Dense(n_hid, act='relu')(lay_a3)
    lay_a5 = Dropout(0.2)(lay_a4)
    lay_a6 = Dense(n_hid, act='relu')(lay_a5)
    lay_a7 = Dropout(0.2)(lay_a6)
    lay_a8 = Dense(n_out, act='sigmoid', b_init=-1,
                   name='a8')(lay_a7)  # shape: (n_songs, n_chunk, n_out)

    # detector
    lay_b1 = Lambda(mean_pool)(lay_in0)  # shape: (n_songs, n_chunk, n_out)
    lay_b8 = Dense(n_out, act='sigmoid',
                   name='b4')(lay_b1)  # shape: (n_songs, n_chunk, n_out)

    md = Model(in_layers=[lay_in0], out_layers=[lay_a8, lay_b8], any_layers=[])
    md.compile()
    md.summary()

    # callback, write out dection scores to .txt each epoch
    dump_fd = cfg.scrap_fd + '/Results_dev/jdc_eer/fold' + str(fold)
    print_scores = cb_eer.PrintScoresDetectionClassification(va_X,
                                                             va_na_list,
                                                             dump_fd,
                                                             call_freq=1)

    # callback, print loss each epoch
    validation = Validation(tr_x=tr_X,
                            tr_y=tr_y,
                            va_x=va_X,
                            va_y=va_y,
                            te_x=None,
                            te_y=None,
                            metrics=[loss_func],
                            call_freq=1,
                            dump_path=None)

    # callback, save model every N epochs
    save_model = SaveModel(dump_fd=cfg.scrap_fd + '/Md_dev_jdc', call_freq=10)

    # combine all callbacks
    callbacks = [validation, save_model, print_scores]

    # optimizer
    # optimizer = SGD( 0.01, 0.95 )
    optimizer = Adam(2e-4)

    # fit model
    md.fit(x=tr_X,
           y=tr_y,
           batch_size=10,
           n_epochs=301,
           loss_func=loss_func,
           optimizer=optimizer,
           callbacks=callbacks)