Example #1
0
    def save(self, img_pil, y_list, x_list, mask):
        img_p = hi.points_on_image(y_list, x_list, img_pil)

        img_maskspil = hi.mask_on_image(img_p,
                                        mask.astype('uint8'),
                                        add_bbox=True)
        hu.save_image('masker.jpg', img_maskspil)
Example #2
0
    def vis_on_batch(self, batch, savedir_image):
        self.eval()
        images = batch["images"].to('cpu')  #helen changed this from .cuda()
        #print(images)
        #print(images.shape)
        points = batch["points"].long().to(
            'cpu')  #helen changed this from .cuda()
        logits = self.model.forward(images)
        probs = logits.sigmoid().cpu().numpy()

        blobs = lcfcn_loss.get_blobs(probs=probs)

        pred_counts = (np.unique(blobs) != 0).sum()
        pred_blobs = blobs
        pred_probs = probs.squeeze()

        # loc
        pred_count = pred_counts.ravel()[0]
        pred_blobs = pred_blobs.squeeze()

        img_org = hu.get_image(batch["images"], denorm="rgb")

        # true points
        y_list, x_list = np.where(batch["points"][0].long().numpy().squeeze())
        img_peaks = hi.points_on_image(y_list, x_list, img_org, radius=11)
        text = "%s ground truth" % (batch["points"].sum().item())
        hi.text_on_image(text=text, image=img_peaks)

        # pred points
        pred_points = lcfcn_loss.blobs2points(pred_blobs).squeeze()
        y_list, x_list = np.where(pred_points.squeeze())
        img_pred = hi.mask_on_image(img_org, pred_blobs)
        #img_pred = hi.points_on_image(y_list, x_list, img_org)
        text = "%s predicted" % (len(y_list))
        hi.text_on_image(text=text, image=img_pred)

        # ***************            helen added this code
        plt.imshow(
            img_pred
        )  #these lines of code display the image with the model's predications on it
        plt.show()
        # ***************            end of helen's code

        # heatmap
        heatmap = hi.gray2cmap(pred_probs)
        heatmap = hu.f2l(heatmap)
        hi.text_on_image(text="lcfcn heatmap", image=heatmap)

        img_mask = np.hstack([img_peaks, img_pred, heatmap])

        hu.save_image(savedir_image, img_mask)
    def vis_on_batch(self, batch, savedir_image):
        self.eval()
        images = batch["images"].cuda()
        points = batch["points"].long().cuda()
        logits = self.model_base.forward(images)
        blobs = lcfcn_loss.get_blobs(logits)

        pred_counts = (np.unique(blobs) != 0).sum()
        pred_blobs = blobs
        pred_probs = F.softmax(logits, dim=1)

        # loc
        pred_count = pred_counts.ravel()[0]
        pred_blobs = pred_blobs.squeeze()

        img_org = hu.get_image(batch["images"], denorm="rgb")

        # true points
        y_list, x_list = np.where(batch["points"][0].long().numpy().squeeze())
        img_peaks = haven_img.points_on_image(y_list, x_list, img_org)
        text = "%s ground truth" % (batch["points"].sum().item())
        haven_img.text_on_image(text=text, image=img_peaks)

        # pred points
        pred_points = lcfcn_loss.blobs2points(pred_blobs).squeeze()
        y_list, x_list = np.where(pred_points.squeeze())
        img_pred = haven_img.points_on_image(y_list, x_list, img_org)
        text = "%s predicted" % (len(y_list))
        haven_img.text_on_image(text=text, image=img_pred)

        # heatmap
        heatmap = hi.gray2cmap(pred_probs.squeeze().cpu().numpy())
        heatmap = hu.f2l(heatmap)
        haven_img.text_on_image(text="lcfcn heatmap", image=heatmap)

        img_mask = np.hstack([img_peaks, img_pred])

        hu.save_image(savedir_image, img_mask)
Example #4
0
def get_blob_list(mask_dict, points_mask, img_pil, split_inst=False):
    blob_list = []
    mask = preds = mask_dict['preds']
    probs = mask_dict['probs']
    assert probs.shape[1] == preds.shape[0]
    assert probs.shape[2] == preds.shape[1]
    
    imask = np.zeros(mask.shape)
    cmask = np.zeros(mask.shape)
    
    blob_id = 1
    for c in np.unique(mask):
        if c == 0:
            continue
        probs_class = probs[c]
        point_ind = points_mask == c
        inst_mask = morphology.label(mask==c)
        for l in np.unique(inst_mask):
            if l == 0:
                continue
            blob_ind = inst_mask == l
            locs = np.where(blob_ind * point_ind)
            y_list, x_list = locs
            n_points = len(y_list)
            if n_points == 0:
                continue
            if n_points > 1 and split_inst: 
                # split multiple points
                img_points = hi.points_on_image(y_list, x_list, img_pil)
                img_masks = hi.mask_on_image(img_pil, mask)
                img_masks = hi.mask_on_image(img_points.copy(), blob_ind)
                hu.save_image('tmp.jpg', (img_points)*0.5 + hu.f2l(hi.gray2cmap(probs_class))*0.5)
                hu.save_image('tmp.jpg', img_masks)
                
                for yi, xi in zip(y_list, x_list):
                    imask, cmask, blob_list, blob_id = add_mask(yi, xi, points_mask, 
                                                            blob_ind, 
                                                            n_points, blob_list, imask, cmask,
                                                            blob_id)
            else:
                # add for that single point
                yi, xi = y_list[0], x_list[0]
                imask, cmask, blob_list, blob_id = add_mask(yi, xi, points_mask, 
                                                            blob_ind, 
                                                            n_points, blob_list, imask, cmask,
                                                            blob_id)
                

    return blob_list, cmask.astype('uint8'), imask.astype('uint8')
Example #5
0
 def test_get_images(self):
     # save a score_list
     hi.points_on_image([3,2], [3,2], np.ones((100,100, 3)), 
                     radius=3, c_list=[0, 1])