def test_current_context(self): """Check the functionality of the current_context attribute. This method is tested for the following cases: 1. no context 2. random contexts 3. fixed single context 4. fixed multiple contexts """ np.random.seed(0) random.seed(0) # test case 1 env = AntMaze(use_contexts=False) env.reset() self.assertIsNone(env.current_context) # test case 2 env = AntMaze(use_contexts=True, random_contexts=True, context_range=[(-4, 5), (4, 20)]) env.reset() np.testing.assert_almost_equal( env.current_context, np.array([3.5997967, 16.1272704])) # test case 3 env = AntMaze(use_contexts=True, random_contexts=False, context_range=[-4, 5]) env.reset() np.testing.assert_almost_equal( env.current_context, np.array([-4, 5])) # test case 4 env = AntMaze(use_contexts=True, random_contexts=False, context_range=[[-4, 5], [-3, 6], [-2, 7]]) env.reset() np.testing.assert_almost_equal( env.current_context, np.array([-3, 6])) env.reset() np.testing.assert_almost_equal( env.current_context, np.array([-4, 5]))
def _create_env(env, evaluate=False): """Return, and potentially create, the environment. Parameters ---------- env : str or gym.Env the environment, or the name of a registered environment. evaluate : bool, optional specifies whether this is a training or evaluation environment Returns ------- gym.Env a gym-compatible environment """ if env == "AntMaze": if evaluate: env = AntMaze(use_contexts=True, context_range=[16, 0]) # env = AntMaze(use_contexts=True, context_range=[16, 16]) # env = AntMaze(use_contexts=True, context_range=[0, 16]) else: env = AntMaze(use_contexts=True, random_contexts=True, context_range=[(-4, 20), (-4, 20)]) elif env == "AntPush": if evaluate: env = AntPush(use_contexts=True, context_range=[0, 19]) else: env = AntPush(use_contexts=True, context_range=[0, 19]) # env = AntPush(use_contexts=True, # random_contexts=True, # context_range=[(-16, 16), (-4, 20)]) elif env == "AntFall": if evaluate: env = AntFall(use_contexts=True, context_range=[0, 27, 4.5]) else: env = AntFall(use_contexts=True, context_range=[0, 27, 4.5]) # env = AntFall(use_contexts=True, # random_contexts=True, # context_range=[(-4, 12), (-4, 28), (0, 5)]) elif env in [ "figureeight0", "figureeight1", "figureeight2", "merge0", "merge1", "merge2", "bottleneck0", "bottleneck1", "bottleneck2", "grid0", "grid1" ]: # Import the benchmark and fetch its flow_params benchmark = __import__("flow.benchmarks.{}".format(env), fromlist=["flow_params"]) flow_params = benchmark.flow_params # Get the env name and a creator for the environment. create_env, env_name = make_create_env(flow_params, version=0) # Create the environment. env = create_env() elif isinstance(env, str): # This is assuming the environment is registered with OpenAI gym. env = gym.make(env) # Reset the environment. if env is not None: env.reset() return env