def create_songdet(h5, sngidxfle): ''' Collects song details for all unique songs heard by 100 raters. Format of dictionary: { SongID : [ Att_0, Att_1, Att_2 ] } ''' import hdf5_getters sngdetfle = open("songdet.txt", "wb") sngdetdic = dict() sngidxfle = open(sngidxfle, "rb") sngidxdic = pickle.load(sngidxfle) for elem in sngidxdic: songidx = sngidxdic[elem] tempo = hdf5_getters.get_tempo(h5, songidx) loud = hdf5_getters.get_loudness(h5, songidx) year = hdf5_getters.get_year(h5, songidx) tmsig = hdf5_getters.get_time_signature(h5, songidx) key = hdf5_getters.get_key(h5, songidx) mode = hdf5_getters.get_mode(h5, songidx) duration = hdf5_getters.get_duration(h5, songidx) fadein = hdf5_getters.get_end_of_fade_in(h5, songidx) fadeout = hdf5_getters.get_start_of_fade_out(h5, songidx) artfam = hdf5_getters.get_artist_familiarity(h5, songidx) sngdetdic[elem] = [duration, tmsig, tempo, key, mode, fadein, fadeout, year, loud, artfam] pickle.dump(sngdetdic, sngdetfle) sngdetfle.close()
def func_to_extract_features(filename): """ This function extracts all features: per-track, per-section and per-segment """ # - open the song file h5 = GETTERS.open_h5_file_read(filename) # - get per-track features and put them artist_id = GETTERS.get_artist_id(h5) song_id = GETTERS.get_song_id(h5) artist_familiarity = GETTERS.get_artist_familiarity(h5) artist_hotttnesss = GETTERS.get_artist_hotttnesss(h5) artist_latitude = GETTERS.get_artist_latitude(h5) artist_longitude = GETTERS.get_artist_longitude(h5) danceability = GETTERS.get_danceability(h5) energy = GETTERS.get_energy(h5) loudness = GETTERS.get_loudness(h5) song_hotttnesss = GETTERS.get_song_hotttnesss(h5) tempo = GETTERS.get_tempo(h5) year = GETTERS.get_year(h5) # artist_ids.add(artist_id) # features_tuple = (artist_id, artist_familiarity, artist_hotttnesss, artist_latitude, artist_longitude, danceability, energy, loudness, song_hotttnesss, tempo, year) features_tuple = (artist_id, artist_familiarity, artist_hotttnesss, loudness, song_hotttnesss, tempo, year) # print features_tuple features_tuples[song_id] = features_tuple # files_per_artist[artist_id] += 1 # - close the file h5.close()
def create_songdet(h5, sngidxfle): ''' Collects song details for all unique songs heard by 100 raters. Format of dictionary: { SongID : [ Att_0, Att_1, Att_2 ] } ''' import hdf5_getters sngdetfle = open("songdet.txt", "wb") sngdetdic = dict() sngidxfle = open(sngidxfle, "rb") sngidxdic = pickle.load(sngidxfle) for elem in sngidxdic: songidx = sngidxdic[elem] tempo = hdf5_getters.get_tempo(h5, songidx) loud = hdf5_getters.get_loudness(h5, songidx) year = hdf5_getters.get_year(h5, songidx) tmsig = hdf5_getters.get_time_signature(h5, songidx) key = hdf5_getters.get_key(h5, songidx) mode = hdf5_getters.get_mode(h5, songidx) duration = hdf5_getters.get_duration(h5, songidx) fadein = hdf5_getters.get_end_of_fade_in(h5, songidx) fadeout = hdf5_getters.get_start_of_fade_out(h5, songidx) artfam = hdf5_getters.get_artist_familiarity(h5, songidx) sngdetdic[elem] = [ duration, tmsig, tempo, key, mode, fadein, fadeout, year, loud, artfam ] pickle.dump(sngdetdic, sngdetfle) sngdetfle.close()
def get_attribute(files): array = [] count = 0 for f in files: temp = [] count += 1 print(f) h5 = hdf5_getters.open_h5_file_read(f) temp.append(hdf5_getters.get_num_songs(h5)) temp.append(hdf5_getters.get_artist_familiarity(h5)) temp.append(hdf5_getters.get_artist_hotttnesss(h5)) temp.append(hdf5_getters.get_danceability(h5)) temp.append(hdf5_getters.get_energy(h5)) temp.append(hdf5_getters.get_key(h5)) temp.append(hdf5_getters.get_key_confidence(h5)) temp.append(hdf5_getters.get_loudness(h5)) temp.append(hdf5_getters.get_mode(h5)) temp.append(hdf5_getters.get_mode_confidence(h5)) temp.append(hdf5_getters.get_tempo(h5)) temp.append(hdf5_getters.get_time_signature(h5)) temp.append(hdf5_getters.get_time_signature_confidence(h5)) temp.append(hdf5_getters.get_title(h5)) temp.append(hdf5_getters.get_artist_name(h5)) temp = np.nan_to_num(temp) array.append(temp) # if count%100 ==0: # print(array[count-100:count-1]) # kmean.fit(array[count-100:count-1]) h5.close() return array
def process_song(h5_song_file): song = {} song['artist_familiarity'] = hdf5_getters.get_artist_familiarity(h5) song['artist_id'] = hdf5_getters.get_artist_id(h5) song['artist_name'] = hdf5_getters.get_artist_name(h5) song['artist_hotttnesss'] = hdf5_getters.get_artist_hotttnesss(h5); song['title'] = hdf5_getters.get_title(h5) terms = hdf5_getters.get_artist_terms(h5) terms_freq = hdf5_getters.get_artist_terms_freq(h5) terms_weight = hdf5_getters.get_artist_terms_weight(h5) terms_array = [] # Creating a array of [term, its frequency, its weight]. Doing this for all terms associated # with the artist for i in range(len(terms)): terms_array.append([terms[i], terms_freq[i], terms_weight[i]]) song['artist_terms'] = terms_array beats_start = hdf5_getters.get_beats_start(h5) song['beats_start_variance'] = variance(beats_start) #beats variance in yocto seconds(10^-24s) song['number_of_beats'] = len(beats_start) song['duration'] = hdf5_getters.get_duration(h5) song['loudness'] = hdf5_getters.get_loudness(h5) sections_start = hdf5_getters.get_sections_start(h5) song['sections_start_variance'] = variance(sections_start) song['number_of_sections'] = len(sections_start) segments_pitches = hdf5_getters.get_segments_pitches(h5) (a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11) = split_segments(segments_pitches) song['segments_pitches_variance'] = [variance(a0), variance(a1), variance(a2), variance(a3), variance(a4), variance(a5), variance(a6), variance(a7), variance(a8), variance(a9), variance(a10), variance(a11)] song['segments_pitches_mean'] = [mean(a0), mean(a1), mean(a2), mean(a3), mean(a4), mean(a5), mean(a6), mean(a7), mean(a8), mean(a9), mean(a10), mean(a11)] segments_timbre = hdf5_getters.get_segments_timbre(h5) (a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11) = split_segments(segments_timbre) song['segments_timbre_variance'] = [variance(a0), variance(a1), variance(a2), variance(a3), variance(a4), variance(a5), variance(a6), variance(a7), variance(a8), variance(a9), variance(a10), variance(a11)] song['segments_timbre_mean'] = [mean(a0), mean(a1), mean(a2), mean(a3), mean(a4), mean(a5), mean(a6), mean(a7), mean(a8), mean(a9), mean(a10), mean(a11)] song['tempo'] = hdf5_getters.get_tempo(h5) song['_id'] = hdf5_getters.get_song_id(h5) song['year'] = hdf5_getters.get_year(h5) return song
def h5_to_csv_fields(h5,song): '''Converts h5 format to text Inputs: h5, an h5 file object, usable with the wrapper code MSongsDB song, an integer, representing which song in the h5 file to take the info out of (h5 files contain many songs) Output: a string representing all the information of this song, as a single line of a csv file ''' rv=[] ##All these are regular getter functions from wrapper code rv.append(gt.get_artist_name(h5,song)) rv.append(gt.get_title(h5, song)) rv.append(gt.get_release(h5, song)) rv.append(gt.get_year(h5,song)) rv.append(gt.get_duration(h5,song)) rv.append(gt.get_artist_familiarity(h5,song)) rv.append(gt.get_artist_hotttnesss(h5,song)) rv.append(gt.get_song_hotttnesss(h5, song)) ##artist_terms, artist_terms_freq, and artist_terms_weight getter functions ##are all arrays, so we need to turn them into strings first. We used '_' as a separator rv.append(array_to_csv_field(list(gt.get_artist_terms(h5,song)))) rv.append(array_to_csv_field(list(gt.get_artist_terms_freq(h5,song)))) rv.append(array_to_csv_field(list(gt.get_artist_terms_weight(h5,song)))) rv.append(gt.get_mode(h5,song)) rv.append(gt.get_key(h5,song)) rv.append(gt.get_tempo(h5,song)) rv.append(gt.get_loudness(h5,song)) rv.append(gt.get_danceability(h5,song)) rv.append(gt.get_energy(h5,song)) rv.append(gt.get_time_signature(h5,song)) rv.append(array_to_csv_field(list(gt.get_segments_start(h5,song)))) ##These arrays have vectors (Arrays) as items, 12 dimensional each ##An array like [[1,2,3],[4,5,6]] will be written to csv as '1;2;3_4;5;6', i.e. there's two types of separators rv.append(double_Array_to_csv_field(list(gt.get_segments_timbre(h5,song)),'_',';')) rv.append(double_Array_to_csv_field(list(gt.get_segments_pitches(h5,song)),'_',';')) rv.append(array_to_csv_field(list(gt.get_segments_loudness_start(h5,song)))) rv.append(array_to_csv_field(list(gt.get_segments_loudness_max(h5,song)))) rv.append(array_to_csv_field(list(gt.get_segments_loudness_max_time(h5,song)))) rv.append(array_to_csv_field(list(gt.get_sections_start(h5,song)))) ##turn this list into a string with comma separators (i.e. a csv line) rv_string=array_to_csv_field(rv, ",") rv_string+="\n" return rv_string
def get_attribute(f): temp = [] count += 1 print(f) h5 = hdf5_getters.open_h5_file_read(f) temp.append(hdf5_getters.get_num_songs(h5)) temp.append(hdf5_getters.get_artist_familiarity(h5)) temp.append(hdf5_getters.get_artist_hotttnesss(h5)) temp.append(hdf5_getters.get_danceability(h5)) temp.append(hdf5_getters.get_energy(h5)) temp.append(hdf5_getters.get_key(h5)) temp.append(hdf5_getters.get_key_confidence(h5)) temp.append(hdf5_getters.get_loudness(h5)) temp.append(hdf5_getters.get_mode(h5)) temp.append(hdf5_getters.get_mode_confidence(h5)) temp.append(hdf5_getters.get_tempo(h5)) temp.append(hdf5_getters.get_time_signature(h5)) temp.append(hdf5_getters.get_time_signature_confidence(h5)) temp = np.nan_to_num(temp) array.append(temp) h5.close()
def get_all_attributes(filename): """ This function does 3 simple things: - open the song file - get all required attributes - write it to a csv file - close the files """ with open('attributes.csv', 'a') as csvfile: try: # let's apply the previous function to all files csvwriter = csv.writer(csvfile, delimiter='\t') h5 = GETTERS.open_h5_file_read(filename) RESULTS = [] RESULTS.append(GETTERS.get_year(h5)) RESULTS.append(GETTERS.get_artist_id(h5)) RESULTS.append(GETTERS.get_artist_name(h5)) RESULTS.append(GETTERS.get_artist_mbid(h5)) RESULTS.append(convert_terms(GETTERS.get_artist_terms(h5))) RESULTS.append(GETTERS.get_artist_hotttnesss(h5)) RESULTS.append(GETTERS.get_artist_latitude(h5)) RESULTS.append(GETTERS.get_artist_longitude(h5)) RESULTS.append(GETTERS.get_artist_familiarity(h5)) RESULTS.append(GETTERS.get_danceability(h5)) RESULTS.append(GETTERS.get_duration(h5)) RESULTS.append(GETTERS.get_energy(h5)) RESULTS.append(GETTERS.get_loudness(h5)) RESULTS.append(GETTERS.get_song_hotttnesss(h5)) RESULTS.append(GETTERS.get_song_id(h5)) RESULTS.append(GETTERS.get_tempo(h5)) RESULTS.append(GETTERS.get_time_signature(h5)) RESULTS.append(GETTERS.get_title(h5)) RESULTS.append(GETTERS.get_track_id(h5)) RESULTS.append(GETTERS.get_release(h5)) csvwriter.writerow(RESULTS) h5.close() except AttributeError: pass
def func_to_extract_features(filename): """ This function does 3 simple things: - open the song file - get artist ID and put it - close the file """ global cntnan global listfeatures cf = [] h5 = GETTERS.open_h5_file_read(filename) nanfound = 0 #Get target feature: song hotness #FEATURE 0 song_hotness = GETTERS.get_song_hotttnesss(h5) if math.isnan(song_hotness): nanfound = 1 cntnan = cntnan + 1 else: if song_hotness <= 0.2: song_hotness_class = 0 elif song_hotness <= 0.4: song_hotness_class = 1 elif song_hotness <= 0.6: song_hotness_class = 2 elif song_hotness <= 0.8: song_hotness_class = 3 else: song_hotness_class = 4 cf.append(song_hotness_class) #FEATURE 1 #Get song loudness song_loudness = GETTERS.get_loudness(h5) if math.isnan(song_loudness): nanfound = 1 cntnan = cntnan + 1 else: cf.append(song_loudness) #FEATURE 2 #Get song year song_year = GETTERS.get_year(h5) if song_year == 0: nanfound = 1 cntnan = cntnan + 1 else: cf.append(song_year) #FEATURE 3 #Get song tempo song_tempo = GETTERS.get_tempo(h5) cf.append(song_tempo) #Feature 4 #Artist familarity artist_familiarity = GETTERS.get_artist_familiarity(h5) cf.append(artist_familiarity) #Feature 5 artist_hotness = GETTERS.get_artist_hotttnesss(h5) if math.isnan(artist_hotness): nanfound = 1 cntnan = cntnan + 1 else: cf.append(artist_hotness) if nanfound == 0: strlist = list_to_csv(cf) listfeatures.append(strlist) h5.close()
if __name__ == "__main__": with open("fields.csv", "wb") as f: writer = csv.writer(f) # initialize the csv writer # for each track in the summary file, get the 11 fields and output to csv h5_file = hdf5_getters.open_h5_file_read("msd_summary_file.h5") for k in range(1000000): print "index!!!: ", k id = hdf5_getters.get_track_id(h5_file, k) # get track_id TRA13e39.. title = hdf5_getters.get_title(h5_file, k) # get song title artist_name = hdf5_getters.get_artist_name(h5_file, k) year = int(hdf5_getters.get_year(h5_file, k)) hotness = float(hdf5_getters.get_song_hotttnesss(h5_file, k)) artist_familiarity = float(hdf5_getters.get_artist_familiarity(h5_file, k)) f5 = int(hdf5_getters.get_key(h5_file, k)) # get key f2 = float(hdf5_getters.get_loudness(h5_file, k)) # get loudness f1 = float(hdf5_getters.get_tempo(h5_file, k)) # get tempo f4 = int(hdf5_getters.get_duration(h5_file, k)) # get duration f3 = float(hdf5_getters.get_time_signature(h5_file, k)) # get time signature # Get rid of missing info and change invalid numbers for meta data if not artist_name: artist_name = "unknown" if not artist_familiarity: artist_familiarity = 0.0 if not hotness:
def main(): outputFile1 = open('SongCSV.csv', 'w') csvRowString = "" ################################################# #if you want to prompt the user for the order of attributes in the csv, #leave the prompt boolean set to True #else, set 'prompt' to False and set the order of attributes in the 'else' #clause prompt = False ################################################# if prompt == True: while prompt: prompt = False csvAttributeString = raw_input("\n\nIn what order would you like the colums of the CSV file?\n" + "Please delineate with commas. The options are: " + "AlbumName, AlbumID, ArtistID, ArtistLatitude, ArtistLocation, ArtistLongitude,"+ " ArtistName, Danceability, Duration, KeySignature, KeySignatureConfidence, Tempo," + " SongID, TimeSignature, TimeSignatureConfidence, Title, and Year.\n\n" + "For example, you may write \"Title, Tempo, Duration\"...\n\n" + "...or exit by typing 'exit'.\n\n") csvAttributeList = re.split('\W+', csvAttributeString) for i, v in enumerate(csvAttributeList): csvAttributeList[i] = csvAttributeList[i].lower() for attribute in csvAttributeList: # print "Here is the attribute: " + attribute + " \n" if attribute == 'AlbumID'.lower(): csvRowString += 'AlbumID' elif attribute == 'AlbumName'.lower(): csvRowString += 'AlbumName' elif attribute == 'ArtistID'.lower(): csvRowString += 'ArtistID' elif attribute == 'ArtistLatitude'.lower(): csvRowString += 'ArtistLatitude' elif attribute == 'ArtistLocation'.lower(): csvRowString += 'ArtistLocation' elif attribute == 'ArtistLongitude'.lower(): csvRowString += 'ArtistLongitude' elif attribute == 'ArtistName'.lower(): csvRowString += 'ArtistName' elif attribute == 'Danceability'.lower(): csvRowString += 'Danceability' elif attribute == 'Duration'.lower(): csvRowString += 'Duration' elif attribute == 'KeySignature'.lower(): csvRowString += 'KeySignature' elif attribute == 'KeySignatureConfidence'.lower(): csvRowString += 'KeySignatureConfidence' elif attribute == 'SongID'.lower(): csvRowString += "SongID" elif attribute == 'Tempo'.lower(): csvRowString += 'Tempo' elif attribute == 'TimeSignature'.lower(): csvRowString += 'TimeSignature' elif attribute == 'TimeSignatureConfidence'.lower(): csvRowString += 'TimeSignatureConfidence' elif attribute == 'Title'.lower(): csvRowString += 'Title' elif attribute == 'Year'.lower(): csvRowString += 'Year' elif attribute == 'track_id'.lower(): csvRowString += 'track_id' elif attribute == 'artist_familiarity'.lower(): csvRowString += 'artist_familiarity' elif attribute == 'artist_hotttnesss'.lower(): csvRowString += 'artist_hotttnesss' elif attribute == 'artist_mbid'.lower(): csvRowString += 'artist_mbid' elif attribute == 'artist_playmeid'.lower(): csvRowString += 'artist_playmeid' elif attribute == 'artist_7digitalid'.lower(): csvRowString += 'artist_7digitalid' elif attribute == 'release'.lower(): csvRowString += 'release' elif attribute == 'release_7digitalid'.lower(): csvRowString += 'release_7digitalid' elif attribute == 'song_hotttnesss'.lower(): csvRowString += 'song_hotttnesss' elif attribute == 'track_7digitalid'.lower(): csvRowString += 'track_7digitalid' elif attribute == 'analysis_sample_rate'.lower(): csvRowString += 'analysis_sample_rate' elif attribute == 'audio_md5'.lower(): csvRowString += 'audio_md5' elif attribute == 'end_of_fade_in'.lower(): csvRowString += 'end_of_fade_in' elif attribute == 'energy'.lower(): csvRowString += 'energy' elif attribute == 'key'.lower(): csvRowString += 'key' elif attribute == 'key_confidence'.lower(): csvRowString += 'key_confidence' elif attribute == 'loudness'.lower(): csvRowString += 'loudness' elif attribute == 'mode'.lower(): csvRowString += 'mode' elif attribute == 'mode_confidence'.lower(): csvRowString += 'mode_confidence' elif attribute == 'start_of_fade_out'.lower(): csvRowString += 'start_of_fade_out' elif attribute == 'Exit'.lower(): sys.exit() else: prompt = True print "==============" print "I believe there has been an error with the input." print "==============" break csvRowString += "," lastIndex = len(csvRowString) csvRowString = csvRowString[0:lastIndex-1] csvRowString += "\n" outputFile1.write(csvRowString); csvRowString = "" #else, if you want to hard code the order of the csv file and not prompt #the user, else: ################################################# #change the order of the csv file here #Default is to list all available attributes (in alphabetical order) csvRowString = ("SongID,AlbumID,AlbumName,ArtistID,ArtistLatitude,ArtistLocation,"+ "ArtistLongitude,ArtistName,Danceability,Duration,KeySignature,"+ "KeySignatureConfidence,Tempo,TimeSignature,TimeSignatureConfidence,"+ "Title,Year,track_id,artist_hotttnesss,artist_mbid,artist_playmeid,artist_7digitalid,"+ "release,release_7digitalid,song_hotttnesss,track_7digitalid,analysis_sample_rate,audio_md5,"+ "end_of_fade_in,energy,key,key_confidence,loudness,mode,mode_confidence,start_of_fade_out") ################################################# csvAttributeList = re.split('\W+', csvRowString) for i, v in enumerate(csvAttributeList): csvAttributeList[i] = csvAttributeList[i].lower() outputFile1.write("SongNumber,"); outputFile1.write(csvRowString + "\n"); csvRowString = "" ################################################# #Set the basedir here, the root directory from which the search #for files stored in a (hierarchical data structure) will originate basedir = "/vagrant/genrepython/MillionSongSubset" # "." As the default means the current directory ext = ".h5" #Set the extension here. H5 is the extension for HDF5 files. ################################################# #FOR LOOP for root, dirs, files in os.walk(basedir): files = glob.glob(os.path.join(root,'*'+ext)) for f in files: print f songH5File = hdf5_getters.open_h5_file_read(f) song = Song(str(hdf5_getters.get_song_id(songH5File))) testDanceability = hdf5_getters.get_danceability(songH5File) # print type(testDanceability) # print ("Here is the danceability: ") + str(testDanceability) song.artistID = str(hdf5_getters.get_artist_id(songH5File)) song.albumID = str(hdf5_getters.get_release_7digitalid(songH5File)) song.albumName = str(hdf5_getters.get_release(songH5File)) song.artistLatitude = str(hdf5_getters.get_artist_latitude(songH5File)) song.artistLocation = str(hdf5_getters.get_artist_location(songH5File)) song.artistLongitude = str(hdf5_getters.get_artist_longitude(songH5File)) song.artistName = str(hdf5_getters.get_artist_name(songH5File)) song.danceability = str(hdf5_getters.get_danceability(songH5File)) song.duration = str(hdf5_getters.get_duration(songH5File)) # song.setGenreList() song.keySignature = str(hdf5_getters.get_key(songH5File)) song.keySignatureConfidence = str(hdf5_getters.get_key_confidence(songH5File)) # song.lyrics = None # song.popularity = None song.tempo = str(hdf5_getters.get_tempo(songH5File)) song.timeSignature = str(hdf5_getters.get_time_signature(songH5File)) song.timeSignatureConfidence = str(hdf5_getters.get_time_signature_confidence(songH5File)) song.title = str(hdf5_getters.get_title(songH5File)) song.year = str(hdf5_getters.get_year(songH5File)) song.track_id = str(hdf5_getters.get_track_id(songH5File)) song.artist_familiarity = str(hdf5_getters.get_artist_familiarity(songH5File)) song.artist_hotttnesss = str(hdf5_getters.get_artist_hotttnesss(songH5File)) song.artist_mbid = str(hdf5_getters.get_artist_mbid(songH5File)) song.artist_playmeid = str(hdf5_getters.get_artist_playmeid(songH5File)) song.artist_7digitalid = str(hdf5_getters.get_artist_7digitalid(songH5File)) song.release = str(hdf5_getters.get_release(songH5File)) song.release_7digitalid = str(hdf5_getters.get_release_7digitalid(songH5File)) song.song_hotttnesss = str(hdf5_getters.get_song_hotttnesss(songH5File)) song.track_7digitalid = str(hdf5_getters.get_track_7digitalid(songH5File)) song.analysis_sample_rate = str(hdf5_getters.get_analysis_sample_rate(songH5File)) song.audio_md5 = str(hdf5_getters.get_audio_md5(songH5File)) song.end_of_fade_in = str(hdf5_getters.get_end_of_fade_in(songH5File)) song.energy = str(hdf5_getters.get_energy(songH5File)) song.key = str(hdf5_getters.get_key(songH5File)) song.key_confidence = str(hdf5_getters.get_key_confidence(songH5File)) song.loudness = str(hdf5_getters.get_loudness(songH5File)) song.mode = str(hdf5_getters.get_mode(songH5File)) song.mode_confidence = str(hdf5_getters.get_mode_confidence(songH5File)) song.start_of_fade_out = str(hdf5_getters.get_start_of_fade_out(songH5File)) #print song count csvRowString += str(song.songCount) + "," for attribute in csvAttributeList: # print "Here is the attribute: " + attribute + " \n" if attribute == 'AlbumID'.lower(): csvRowString += song.albumID elif attribute == 'AlbumName'.lower(): albumName = song.albumName albumName = albumName.replace(',',"") csvRowString += "\"" + albumName + "\"" elif attribute == 'ArtistID'.lower(): csvRowString += "\"" + song.artistID + "\"" elif attribute == 'ArtistLatitude'.lower(): latitude = song.artistLatitude if latitude == 'nan': latitude = '' csvRowString += latitude elif attribute == 'ArtistLocation'.lower(): location = song.artistLocation location = location.replace(',','') csvRowString += "\"" + location + "\"" elif attribute == 'ArtistLongitude'.lower(): longitude = song.artistLongitude if longitude == 'nan': longitude = '' csvRowString += longitude elif attribute == 'ArtistName'.lower(): csvRowString += "\"" + song.artistName + "\"" elif attribute == 'Danceability'.lower(): csvRowString += song.danceability elif attribute == 'Duration'.lower(): csvRowString += song.duration elif attribute == 'KeySignature'.lower(): csvRowString += song.keySignature elif attribute == 'KeySignatureConfidence'.lower(): # print "key sig conf: " + song.timeSignatureConfidence csvRowString += song.keySignatureConfidence elif attribute == 'SongID'.lower(): csvRowString += "\"" + song.id + "\"" elif attribute == 'Tempo'.lower(): # print "Tempo: " + song.tempo csvRowString += song.tempo elif attribute == 'TimeSignature'.lower(): csvRowString += song.timeSignature elif attribute == 'TimeSignatureConfidence'.lower(): # print "time sig conf: " + song.timeSignatureConfidence csvRowString += song.timeSignatureConfidence elif attribute == 'Title'.lower(): csvRowString += "\"" + song.title + "\"" elif attribute == 'Year'.lower(): csvRowString += song.year elif attribute == 'track_id'.lower(): csvRowString += song.track_id elif attribute == 'artist_familiarity'.lower(): csvRowString += song.artist_familiarity elif attribute == 'artist_hotttnesss'.lower(): csvRowString += song.artist_hotttnesss elif attribute == 'artist_mbid'.lower(): csvRowString += song.artist_mbid elif attribute == 'artist_playmeid'.lower(): csvRowString += song.artist_playmeid elif attribute == 'artist_7digitalid'.lower(): csvRowString += song.artist_7digitalid elif attribute == 'release'.lower(): csvRowString += song.release elif attribute == 'release_7digitalid'.lower(): csvRowString += song.release_7digitalid elif attribute == 'song_hotttnesss'.lower(): csvRowString += song.song_hotttnesss elif attribute == 'track_7digitalid'.lower(): csvRowString += song.track_7digitalid elif attribute == 'analysis_sample_rate'.lower(): csvRowString += song.analysis_sample_rate elif attribute == 'audio_md5'.lower(): csvRowString += song.audio_md5 elif attribute == 'end_of_fade_in'.lower(): csvRowString += song.end_of_fade_in elif attribute == 'energy'.lower(): csvRowString += song.energy elif attribute == 'key'.lower(): csvRowString += song.key elif attribute == 'key_confidence'.lower(): csvRowString += song.key_confidence elif attribute == 'loudness'.lower(): csvRowString += song.loudness elif attribute == 'mode'.lower(): csvRowString += song.mode elif attribute == 'mode_confidence'.lower(): csvRowString += song.mode_confidence elif attribute == 'start_of_fade_out'.lower(): csvRowString += song.start_of_fade_out else: csvRowString += "Erm. This didn't work. Error. :( :(\n" csvRowString += "," #Remove the final comma from each row in the csv lastIndex = len(csvRowString) csvRowString = csvRowString[0:lastIndex-1] csvRowString += "\n" outputFile1.write(csvRowString) csvRowString = "" songH5File.close() outputFile1.close()
if __name__ == "__main__": with open("fields.csv", "wb") as f: writer = csv.writer(f) #initialize the csv writer # for each track in the summary file, get the 11 fields and output to csv h5_file = hdf5_getters.open_h5_file_read('msd_summary_file.h5') for k in range(1000000): print "index!!!: ", k id = hdf5_getters.get_track_id(h5_file,k) #get track_id TRA13e39.. title = hdf5_getters.get_title(h5_file,k) # get song title artist_name = hdf5_getters.get_artist_name(h5_file,k) year = int(hdf5_getters.get_year(h5_file,k)) hotness= float(hdf5_getters.get_song_hotttnesss(h5_file,k)) artist_familiarity = float(hdf5_getters.get_artist_familiarity(h5_file,k)) f5 = int(hdf5_getters.get_key(h5_file,k)) #get key f2 = float(hdf5_getters.get_loudness(h5_file,k)) #get loudness f1 = float(hdf5_getters.get_tempo(h5_file,k)) #get tempo f4 = int(hdf5_getters.get_duration(h5_file,k)) #get duration f3 = float(hdf5_getters.get_time_signature(h5_file,k)) #get time signature # Get rid of missing info and change invalid numbers for meta data if not artist_name: artist_name = "unknown" if not artist_familiarity: artist_familiarity=0.0
cnt = 0 loops = 0 for alpha in string.ascii_uppercase: for root, dirs, files in os.walk('/mnt/million-songs/data/' + alpha): files = glob.glob(os.path.join(root, '*' + '.h5')) for f in files: h5 = GETTERS.open_h5_file_read(f) num_songs = GETTERS.get_num_songs(h5) print f, num_songs for i in range(num_songs): analysis_sample_rate = GETTERS.get_analysis_sample_rate(h5, i) artist_7digitalid = GETTERS.get_artist_7digitalid(h5, i) artist_familiarity = GETTERS.get_artist_familiarity(h5, i) artist_hotttnesss = GETTERS.get_artist_hotttnesss(h5, i) artist_id = GETTERS.get_artist_id(h5, i) artist_latitude = GETTERS.get_artist_latitude(h5, i) artist_location = GETTERS.get_artist_location(h5, i) artist_longitude = GETTERS.get_artist_longitude(h5, i) artist_mbid = GETTERS.get_artist_mbid(h5, i) artist_mbtags = ','.join( str(e) for e in GETTERS.get_artist_mbtags(h5, i)) # array artist_mbtags_count = ','.join( str(e) for e in GETTERS.get_artist_mbtags_count(h5, i)) # array artist_name = GETTERS.get_artist_name(h5, i) artist_playmeid = GETTERS.get_artist_playmeid(h5, i) artist_terms = ','.join( str(e) for e in GETTERS.get_artist_terms(h5, i)) # array
def data_to_flat_file(basedir,ext='.h5') : """ This function extracts the information from the tables and creates the flat file. """ count = 0; #song counter list_to_write= [] group_index=0 row_to_write = "" writer = csv.writer(open("complete.csv", "wb")) for root, dirs, files in os.walk(basedir): files = glob.glob(os.path.join(root,'*'+ext)) for f in files: row=[] print f h5 = hdf5_getters.open_h5_file_read(f) title = hdf5_getters.get_title(h5) title= title.replace('"','') row.append(title) comma=title.find(',') if comma != -1: print title time.sleep(1) album = hdf5_getters.get_release(h5) album= album.replace('"','') row.append(album) comma=album.find(',') if comma != -1: print album time.sleep(1) artist_name = hdf5_getters.get_artist_name(h5) comma=artist_name.find(',') if comma != -1: print artist_name time.sleep(1) artist_name= artist_name.replace('"','') row.append(artist_name) duration = hdf5_getters.get_duration(h5) row.append(duration) samp_rt = hdf5_getters.get_analysis_sample_rate(h5) row.append(samp_rt) artist_7digitalid = hdf5_getters.get_artist_7digitalid(h5) row.append(artist_7digitalid) artist_fam = hdf5_getters.get_artist_familiarity(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(artist_fam) == True: artist_fam=-1 row.append(artist_fam) artist_hotness= hdf5_getters.get_artist_hotttnesss(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(artist_hotness) == True: artist_hotness=-1 row.append(artist_hotness) artist_id = hdf5_getters.get_artist_id(h5) row.append(artist_id) artist_lat = hdf5_getters.get_artist_latitude(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(artist_lat) == True: artist_lat=-1 row.append(artist_lat) artist_loc = hdf5_getters.get_artist_location(h5) row.append(artist_loc) artist_lon = hdf5_getters.get_artist_longitude(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(artist_lon) == True: artist_lon=-1 row.append(artist_lon) artist_mbid = hdf5_getters.get_artist_mbid(h5) row.append(artist_mbid) #Getting the genre art_trm = hdf5_getters.get_artist_terms(h5) trm_freq = hdf5_getters.get_artist_terms_freq(h5) trn_wght = hdf5_getters.get_artist_terms_weight(h5) a_mb_tags = hdf5_getters.get_artist_mbtags(h5) genre_indexes=get_genre_indexes(trm_freq) #index of the highest freq genre_set=0 #flag to see if the genre has been set or not final_genre=[] genres_so_far=[] for i in range(len(genre_indexes)): genre_tmp=get_genre(art_trm,genre_indexes[i]) #genre that corresponds to the highest freq genres_so_far=genre_dict.get_genre_in_dict(genre_tmp) #getting the genre from the dictionary if len(genres_so_far) != 0: for i in genres_so_far: final_genre.append(i) genre_set=1 if genre_set == 1: col_num=[] for i in final_genre: column=int(i) #getting the column number of the genre col_num.append(column) genre_array=genre_columns(col_num) #genre array for i in range(len(genre_array)): #appending the genre_array to the row row.append(genre_array[i]) else: genre_array=genre_columns(-1) #when there is no genre matched, return an array of [0...0] for i in range(len(genre_array)): #appending the genre_array to the row row.append(genre_array[i]) artist_pmid = hdf5_getters.get_artist_playmeid(h5) row.append(artist_pmid) audio_md5 = hdf5_getters.get_audio_md5(h5) row.append(audio_md5) danceability = hdf5_getters.get_danceability(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(danceability) == True: danceability=-1 row.append(danceability) end_fade_in =hdf5_getters.get_end_of_fade_in(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(end_fade_in) == True: end_fade_in=-1 row.append(end_fade_in) energy = hdf5_getters.get_energy(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(energy) == True: energy=-1 row.append(energy) song_key = hdf5_getters.get_key(h5) row.append(song_key) key_c = hdf5_getters.get_key_confidence(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(key_c) == True: key_c=-1 row.append(key_c) loudness = hdf5_getters.get_loudness(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(loudness) == True: loudness=-1 row.append(loudness) mode = hdf5_getters.get_mode(h5) row.append(mode) mode_conf = hdf5_getters.get_mode_confidence(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(mode_conf) == True: mode_conf=-1 row.append(mode_conf) release_7digitalid = hdf5_getters.get_release_7digitalid(h5) row.append(release_7digitalid) song_hot = hdf5_getters.get_song_hotttnesss(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(song_hot) == True: song_hot=-1 row.append(song_hot) song_id = hdf5_getters.get_song_id(h5) row.append(song_id) start_fade_out = hdf5_getters.get_start_of_fade_out(h5) row.append(start_fade_out) tempo = hdf5_getters.get_tempo(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(tempo) == True: tempo=-1 row.append(tempo) time_sig = hdf5_getters.get_time_signature(h5) row.append(time_sig) time_sig_c = hdf5_getters.get_time_signature_confidence(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(time_sig_c) == True: time_sig_c=-1 row.append(time_sig_c) track_id = hdf5_getters.get_track_id(h5) row.append(track_id) track_7digitalid = hdf5_getters.get_track_7digitalid(h5) row.append(track_7digitalid) year = hdf5_getters.get_year(h5) row.append(year) bars_c = hdf5_getters.get_bars_confidence(h5) bars_start = hdf5_getters.get_bars_start(h5) row_bars_padding=padding(245) #this is the array that will be attached at the end of th row #--------------bars---------------" gral_info=[] gral_info=row[:] empty=[] for i,item in enumerate(bars_c): row.append(group_index) row.append(i) row.append(bars_c[i]) bars_c_avg= get_avg(bars_c) row.append(bars_c_avg) bars_c_max= get_max(bars_c) row.append(bars_c_max) bars_c_min = get_min(bars_c) row.append(bars_c_min) bars_c_stddev= get_stddev(bars_c) row.append(bars_c_stddev) bars_c_count = get_count(bars_c) row.append(bars_c_count) bars_c_sum = get_sum(bars_c) row.append(bars_c_sum) row.append(bars_start[i]) bars_start_avg = get_avg(bars_start) row.append(bars_start_avg) bars_start_max= get_max(bars_start) row.append(bars_start_max) bars_start_min = get_min(bars_start) row.append(bars_start_min) bars_start_stddev= get_stddev(bars_start) row.append(bars_start_stddev) bars_start_count = get_count(bars_start) row.append(bars_start_count) bars_start_sum = get_sum(bars_start) row.append(bars_start_sum) for i in row_bars_padding: row.append(i) writer.writerow(row) row=[] row=gral_info[:] #--------beats---------------" beats_c = hdf5_getters.get_beats_confidence(h5) group_index=1 row=[] row=gral_info[:] row_front=padding(14) #blanks left in front of the row(empty spaces for bars) row_beats_padding=padding(231) for i,item in enumerate(beats_c): row.append(group_index) row.append(i) for index in row_front: #padding blanks in front of the beats row.append(index) row.append(beats_c[i]) beats_c_avg= get_avg(beats_c) row.append(beats_c_avg) beats_c_max= get_max(beats_c) row.append(beats_c_max) beats_c_min = get_min(beats_c) row.append(beats_c_min) beats_c_stddev= get_stddev(beats_c) row.append(beats_c_stddev) beats_c_count = get_count(beats_c) row.append(beats_c_count) beats_c_sum = get_sum(beats_c) row.append(beats_c_sum) beats_start = hdf5_getters.get_beats_start(h5) row.append(beats_start[i]) beats_start_avg = get_avg(beats_start) row.append(beats_start_avg) beats_start_max= get_max(beats_start) row.append(beats_start_max) beats_start_min = get_min(beats_start) row.append(beats_start_min) beats_start_stddev= get_stddev(beats_start) row.append(beats_start_stddev) beats_start_count = get_count(beats_start) row.append(beats_start_count) beats_start_sum = get_sum(beats_start) row.append(beats_start_sum) for i in row_beats_padding: row.append(i) writer.writerow(row) row=[] row=gral_info[:] # "--------sections---------------" row_sec_padding=padding(217) #blank spaces left at the end of the row sec_c = hdf5_getters.get_sections_confidence(h5) group_index=2 row=[] row=gral_info[:] row_front=padding(28) #blank spaces left in front(empty spaces for bars,beats) for i,item in enumerate(sec_c): row.append(group_index) row.append(i) for index in row_front: #padding blanks in front of the sections row.append(index) row.append(sec_c[i]) sec_c_avg= get_avg(sec_c) row.append(sec_c_avg) sec_c_max= get_max(sec_c) row.append(sec_c_max) sec_c_min = get_min(sec_c) row.append(sec_c_min) sec_c_stddev= get_stddev(sec_c) row.append(sec_c_stddev) sec_c_count = get_count(sec_c) row.append(sec_c_count) sec_c_sum = get_sum(sec_c) row.append(sec_c_sum) sec_start = hdf5_getters.get_sections_start(h5) row.append(sec_start[i]) sec_start_avg = get_avg(sec_start) row.append(sec_start_avg) sec_start_max= get_max(sec_start) row.append(sec_start_max) sec_start_min = get_min(sec_start) row.append(sec_start_min) sec_start_stddev= get_stddev(sec_start) row.append(sec_start_stddev) sec_start_count = get_count(sec_start) row.append(sec_start_count) sec_start_sum = get_sum(sec_start) row.append(sec_start_sum) for i in row_sec_padding: #appending the blank spaces at the end of the row row.append(i) writer.writerow(row) row=[] row=gral_info[:] #--------segments---------------" row_seg_padding=padding(182) #blank spaces at the end of the row row_front=padding(42) #blank spaces left in front of segments seg_c = hdf5_getters.get_segments_confidence(h5) group_index=3 row=[] row=gral_info[:] for i,item in enumerate(seg_c): row.append(group_index) row.append(i) for index in row_front: #padding blanks in front of the segments row.append(index) row.append(seg_c[i]) seg_c_avg= get_avg(seg_c) row.append(seg_c_avg) seg_c_max= get_max(seg_c) row.append(seg_c_max) seg_c_min = get_min(seg_c) row.append(seg_c_min) seg_c_stddev= get_stddev(seg_c) row.append(seg_c_stddev) seg_c_count = get_count(seg_c) row.append(seg_c_count) seg_c_sum = get_sum(seg_c) row.append(seg_c_sum) seg_loud_max = hdf5_getters.get_segments_loudness_max(h5) row.append(seg_loud_max[i]) seg_loud_max_avg= get_avg(seg_loud_max) row.append(seg_loud_max_avg) seg_loud_max_max= get_max(seg_loud_max) row.append(seg_loud_max_max) seg_loud_max_min = get_min(seg_loud_max) row.append(seg_loud_max_min) seg_loud_max_stddev= get_stddev(seg_loud_max) row.append(seg_loud_max_stddev) seg_loud_max_count = get_count(seg_loud_max) row.append(seg_loud_max_count) seg_loud_max_sum = get_sum(seg_loud_max) row.append(seg_loud_max_sum) seg_loud_max_time = hdf5_getters.get_segments_loudness_max_time(h5) row.append(seg_loud_max_time[i]) seg_loud_max_time_avg= get_avg(seg_loud_max_time) row.append(seg_loud_max_time_avg) seg_loud_max_time_max= get_max(seg_loud_max_time) row.append(seg_loud_max_time_max) seg_loud_max_time_min = get_min(seg_loud_max_time) row.append(seg_loud_max_time_min) seg_loud_max_time_stddev= get_stddev(seg_loud_max_time) row.append(seg_loud_max_time_stddev) seg_loud_max_time_count = get_count(seg_loud_max_time) row.append(seg_loud_max_time_count) seg_loud_max_time_sum = get_sum(seg_loud_max_time) row.append(seg_loud_max_time_sum) seg_loud_start = hdf5_getters.get_segments_loudness_start(h5) row.append(seg_loud_start[i]) seg_loud_start_avg= get_avg(seg_loud_start) row.append(seg_loud_start_avg) seg_loud_start_max= get_max(seg_loud_start) row.append(seg_loud_start_max) seg_loud_start_min = get_min(seg_loud_start) row.append(seg_loud_start_min) seg_loud_start_stddev= get_stddev(seg_loud_start) row.append(seg_loud_start_stddev) seg_loud_start_count = get_count(seg_loud_start) row.append(seg_loud_start_count) seg_loud_start_sum = get_sum(seg_loud_start) row.append(seg_loud_start_sum) seg_start = hdf5_getters.get_segments_start(h5) row.append(seg_start[i]) seg_start_avg= get_avg(seg_start) row.append(seg_start_avg) seg_start_max= get_max(seg_start) row.append(seg_start_max) seg_start_min = get_min(seg_start) row.append(seg_start_min) seg_start_stddev= get_stddev(seg_start) row.append(seg_start_stddev) seg_start_count = get_count(seg_start) row.append(seg_start_count) seg_start_sum = get_sum(seg_start) row.append(seg_start_sum) for i in row_seg_padding: #appending blank spaces at the end of the row row.append(i) writer.writerow(row) row=[] row=gral_info[:] #----------segments pitch and timbre---------------" row_seg2_padding=padding(14) #blank spaces left at the end of the row row_front=padding(77) #blank spaces left at the front of the segments and timbre seg_pitch = hdf5_getters.get_segments_pitches(h5) transpose_pitch= seg_pitch.transpose() #this is to tranpose the matrix,so we can have 12 rows group_index=4 row=[] row=gral_info[:] for i,item in enumerate(transpose_pitch[0]): row.append(group_index) row.append(i) for index in row_front: #padding blanks in front of segments and timbre row.append(index) row.append(transpose_pitch[0][i]) seg_pitch_avg= get_avg(transpose_pitch[0]) row.append(seg_pitch_avg) seg_pitch_max= get_max(transpose_pitch[0]) row.append(seg_pitch_max) seg_pitch_min = get_min(transpose_pitch[0]) row.append(seg_pitch_min) seg_pitch_stddev= get_stddev(transpose_pitch[0]) row.append(seg_pitch_stddev) seg_pitch_count = get_count(transpose_pitch[0]) row.append(seg_pitch_count) seg_pitch_sum = get_sum(transpose_pitch[0]) row.append(seg_pitch_sum) row.append(transpose_pitch[1][i]) seg_pitch_avg= get_avg(transpose_pitch[1]) row.append(seg_pitch_avg) seg_pitch_max= get_max(transpose_pitch[1]) row.append(seg_pitch_max) seg_pitch_min = get_min(transpose_pitch[1]) row.append(seg_pitch_min) seg_pitch_stddev= get_stddev(transpose_pitch[1]) row.append(seg_pitch_stddev) seg_pitch_count = get_count(transpose_pitch[1]) row.append(seg_pitch_count) seg_pitch_sum = get_sum(transpose_pitch[1]) row.append(seg_pitch_sum) row.append(transpose_pitch[2][i]) seg_pitch_avg= get_avg(transpose_pitch[2]) row.append(seg_pitch_avg) seg_pitch_max= get_max(transpose_pitch[2]) row.append(seg_pitch_max) seg_pitch_min = get_min(transpose_pitch[2]) row.append(seg_pitch_min) seg_pitch_stddev= get_stddev(transpose_pitch[2]) row.append(seg_pitch_stddev) seg_pitch_count = get_count(transpose_pitch[2]) row.append(seg_pitch_count) seg_pitch_sum = get_sum(transpose_pitch[2]) row.append(seg_pitch_sum) row.append(transpose_pitch[3][i]) seg_pitch_avg= get_avg(transpose_pitch[3]) row.append(seg_pitch_avg) seg_pitch_max= get_max(transpose_pitch[3]) row.append(seg_pitch_max) seg_pitch_min = get_min(transpose_pitch[3]) row.append(seg_pitch_min) seg_pitch_stddev= get_stddev(transpose_pitch[3]) row.append(seg_pitch_stddev) seg_pitch_count = get_count(transpose_pitch[3]) row.append(seg_pitch_count) seg_pitch_sum = get_sum(transpose_pitch[3]) row.append(seg_pitch_sum) row.append(transpose_pitch[4][i]) seg_pitch_avg= get_avg(transpose_pitch[4]) row.append(seg_pitch_avg) seg_pitch_max= get_max(transpose_pitch[4]) row.append(seg_pitch_max) seg_pitch_min = get_min(transpose_pitch[4]) row.append(seg_pitch_min) seg_pitch_stddev= get_stddev(transpose_pitch[4]) row.append(seg_pitch_stddev) seg_pitch_count = get_count(transpose_pitch[4]) row.append(seg_pitch_count) seg_pitch_sum = get_sum(transpose_pitch[4]) row.append(seg_pitch_sum) row.append(transpose_pitch[5][i]) seg_pitch_avg= get_avg(transpose_pitch[5]) row.append(seg_pitch_avg) seg_pitch_max= get_max(transpose_pitch[5]) row.append(seg_pitch_max) seg_pitch_min = get_min(transpose_pitch[5]) row.append(seg_pitch_min) seg_pitch_stddev= get_stddev(transpose_pitch[5]) row.append(seg_pitch_stddev) seg_pitch_count = get_count(transpose_pitch[5]) row.append(seg_pitch_count) seg_pitch_sum = get_sum(transpose_pitch[5]) row.append(seg_pitch_sum) row.append(transpose_pitch[6][i]) seg_pitch_avg= get_avg(transpose_pitch[6]) row.append(seg_pitch_avg) seg_pitch_max= get_max(transpose_pitch[6]) row.append(seg_pitch_max) seg_pitch_min = get_min(transpose_pitch[6]) row.append(seg_pitch_min) seg_pitch_stddev= get_stddev(transpose_pitch[6]) row.append(seg_pitch_stddev) seg_pitch_count = get_count(transpose_pitch[6]) row.append(seg_pitch_count) seg_pitch_sum = get_sum(transpose_pitch[6]) row.append(seg_pitch_sum) row.append(transpose_pitch[7][i]) seg_pitch_avg= get_avg(transpose_pitch[7]) row.append(seg_pitch_avg) seg_pitch_max= get_max(transpose_pitch[7]) row.append(seg_pitch_max) seg_pitch_min = get_min(transpose_pitch[7]) row.append(seg_pitch_min) seg_pitch_stddev= get_stddev(transpose_pitch[7]) row.append(seg_pitch_stddev) seg_pitch_count = get_count(transpose_pitch[7]) row.append(seg_pitch_count) seg_pitch_sum = get_sum(transpose_pitch[7]) row.append(seg_pitch_sum) row.append(transpose_pitch[8][i]) seg_pitch_avg= get_avg(transpose_pitch[8]) row.append(seg_pitch_avg) seg_pitch_max= get_max(transpose_pitch[8]) row.append(seg_pitch_max) seg_pitch_min = get_min(transpose_pitch[8]) row.append(seg_pitch_min) seg_pitch_stddev= get_stddev(transpose_pitch[8]) row.append(seg_pitch_stddev) seg_pitch_count = get_count(transpose_pitch[8]) row.append(seg_pitch_count) seg_pitch_sum = get_sum(transpose_pitch[8]) row.append(seg_pitch_sum) row.append(transpose_pitch[9][i]) seg_pitch_avg= get_avg(transpose_pitch[9]) row.append(seg_pitch_avg) seg_pitch_max= get_max(transpose_pitch[9]) row.append(seg_pitch_max) seg_pitch_min = get_min(transpose_pitch[9]) row.append(seg_pitch_min) seg_pitch_stddev= get_stddev(transpose_pitch[9]) row.append(seg_pitch_stddev) seg_pitch_count = get_count(transpose_pitch[9]) row.append(seg_pitch_count) seg_pitch_sum = get_sum(transpose_pitch[9]) row.append(seg_pitch_sum) row.append(transpose_pitch[10][i]) seg_pitch_avg= get_avg(transpose_pitch[10]) row.append(seg_pitch_avg) seg_pitch_max= get_max(transpose_pitch[10]) row.append(seg_pitch_max) seg_pitch_min = get_min(transpose_pitch[10]) row.append(seg_pitch_min) seg_pitch_stddev= get_stddev(transpose_pitch[10]) row.append(seg_pitch_stddev) seg_pitch_count = get_count(transpose_pitch[10]) row.append(seg_pitch_count) seg_pitch_sum = get_sum(transpose_pitch[10]) row.append(seg_pitch_sum) row.append(transpose_pitch[11][i]) seg_pitch_avg= get_avg(transpose_pitch[11]) row.append(seg_pitch_avg) seg_pitch_max= get_max(transpose_pitch[11]) row.append(seg_pitch_max) seg_pitch_min = get_min(transpose_pitch[11]) row.append(seg_pitch_min) seg_pitch_stddev= get_stddev(transpose_pitch[11]) row.append(seg_pitch_stddev) seg_pitch_count = get_count(transpose_pitch[11]) row.append(seg_pitch_count) seg_pitch_sum = get_sum(transpose_pitch[11]) row.append(seg_pitch_sum) #timbre arrays seg_timbre = hdf5_getters.get_segments_timbre(h5) transpose_timbre = seg_pitch.transpose() #tranposing matrix, to have 12 rows row.append(transpose_timbre[0][i]) seg_timbre_avg= get_avg(transpose_timbre[0]) row.append(seg_timbre_avg) seg_timbre_max= get_max(transpose_timbre[0]) row.append(seg_timbre_max) seg_timbre_min = get_min(transpose_timbre[0]) row.append(seg_timbre_min) seg_timbre_stddev=get_stddev(transpose_timbre[0]) row.append(seg_timbre_stddev) seg_timbre_count = get_count(transpose_timbre[0]) row.append(seg_timbre_count) seg_timbre_sum = get_sum(transpose_timbre[0]) row.append(seg_timbre_sum) row.append(transpose_timbre[1][i]) seg_timbre_avg= get_avg(transpose_timbre[1]) row.append(seg_timbre_avg) seg_timbre_max= get_max(transpose_timbre[1]) row.append(seg_timbre_max) seg_timbre_min = get_min(transpose_timbre[1]) row.append(seg_timbre_min) seg_timbre_stddev= get_stddev(transpose_timbre[1]) row.append(seg_timbre_stddev) seg_timbre_count = get_count(transpose_timbre[1]) row.append(seg_timbre_count) seg_timbre_sum = get_sum(transpose_timbre[1]) row.append(seg_timbre_sum) row.append(transpose_timbre[2][i]) seg_timbre_avg= get_avg(transpose_timbre[2]) row.append(seg_timbre_avg) seg_timbre_max= get_max(transpose_timbre[2]) row.append(seg_timbre_max) seg_timbre_min = get_min(transpose_timbre[2]) row.append(seg_timbre_min) seg_timbre_stddev= get_stddev(transpose_timbre[2]) row.append(seg_timbre_stddev) seg_timbre_count = get_count(transpose_timbre[2]) row.append(seg_timbre_count) seg_timbre_sum = get_sum(transpose_timbre[2]) row.append(seg_timbre_sum) row.append(transpose_timbre[3][i]) seg_timbre_avg= get_avg(transpose_timbre[3]) row.append(seg_timbre_avg) seg_timbre_max= get_max(transpose_timbre[3]) row.append(seg_timbre_max) seg_timbre_min = get_min(transpose_timbre[3]) row.append(seg_timbre_min) seg_timbre_stddev= get_stddev(transpose_timbre[3]) row.append(seg_timbre_stddev) seg_timbre_count = get_count(transpose_timbre[3]) row.append(seg_timbre_count) seg_timbre_sum = get_sum(transpose_timbre[3]) row.append(seg_timbre_sum) row.append(transpose_timbre[4][i]) seg_timbre_avg= get_avg(transpose_timbre[4]) row.append(seg_timbre_avg) seg_timbre_max= get_max(transpose_timbre[4]) row.append(seg_timbre_max) seg_timbre_min = get_min(transpose_timbre[4]) row.append(seg_timbre_min) seg_timbre_stddev= get_stddev(transpose_timbre[4]) row.append(seg_timbre_stddev) seg_timbre_count = get_count(transpose_timbre[4]) row.append(seg_timbre_count) seg_timbre_sum = get_sum(transpose_timbre[4]) row.append(seg_timbre_sum) row.append(transpose_timbre[5][i]) seg_timbre_avg= get_avg(transpose_timbre[5]) row.append(seg_timbre_avg) seg_timbre_max= get_max(transpose_timbre[5]) row.append(seg_timbre_max) seg_timbre_min = get_min(transpose_timbre[5]) row.append(seg_timbre_min) seg_timbre_stddev= get_stddev(transpose_timbre[5]) row.append(seg_timbre_stddev) seg_timbre_count = get_count(transpose_timbre[5]) row.append(seg_timbre_count) seg_timbre_sum = get_sum(transpose_timbre[5]) row.append(seg_timbre_sum) row.append(transpose_timbre[6][i]) seg_timbre_avg= get_avg(transpose_timbre[6]) row.append(seg_timbre_avg) seg_timbre_max= get_max(transpose_timbre[6]) row.append(seg_timbre_max) seg_timbre_min = get_min(transpose_timbre[6]) row.append(seg_timbre_min) seg_timbre_stddev= get_stddev(transpose_timbre[6]) row.append(seg_timbre_stddev) seg_timbre_count = get_count(transpose_timbre[6]) row.append(seg_timbre_count) seg_timbre_sum = get_sum(transpose_timbre[6]) row.append(seg_timbre_sum) row.append(transpose_timbre[7][i]) seg_timbre_avg= get_avg(transpose_timbre[7]) row.append(seg_timbre_avg) seg_timbre_max= get_max(transpose_timbre[7]) row.append(seg_timbre_max) seg_timbre_min = get_min(transpose_timbre[7]) row.append(seg_timbre_min) seg_timbre_stddev= get_stddev(transpose_timbre[7]) row.append(seg_timbre_stddev) seg_timbre_count = get_count(transpose_timbre[7]) row.append(seg_timbre_count) seg_timbre_sum = get_sum(transpose_timbre[7]) row.append(seg_timbre_sum) row.append(transpose_timbre[8][i]) seg_timbre_avg= get_avg(transpose_timbre[8]) row.append(seg_timbre_avg) seg_timbre_max= get_max(transpose_timbre[8]) row.append(seg_timbre_max) seg_timbre_min = get_min(transpose_timbre[8]) row.append(seg_timbre_min) seg_timbre_stddev= get_stddev(transpose_timbre[8]) row.append(seg_timbre_stddev) seg_timbre_count = get_count(transpose_timbre[8]) row.append(seg_timbre_count) seg_timbre_sum = get_sum(transpose_timbre[8]) row.append(seg_timbre_sum) row.append(transpose_timbre[9][i]) seg_timbre_avg= get_avg(transpose_timbre[9]) row.append(seg_timbre_avg) seg_timbre_max= get_max(transpose_timbre[9]) row.append(seg_timbre_max) seg_timbre_min = get_min(transpose_timbre[9]) row.append(seg_timbre_min) seg_timbre_stddev= get_stddev(transpose_timbre[9]) row.append(seg_timbre_stddev) seg_timbre_count = get_count(transpose_timbre[9]) row.append(seg_timbre_count) seg_timbre_sum = get_sum(transpose_timbre[9]) row.append(seg_timbre_sum) row.append(transpose_timbre[10][i]) seg_timbre_avg= get_avg(transpose_timbre[10]) row.append(seg_timbre_avg) seg_timbre_max= get_max(transpose_timbre[10]) row.append(seg_timbre_max) seg_timbre_min = get_min(transpose_timbre[10]) row.append(seg_timbre_min) seg_timbre_stddev= get_stddev(transpose_timbre[10]) row.append(seg_timbre_stddev) seg_timbre_count = get_count(transpose_timbre[10]) row.append(seg_timbre_count) seg_timbre_sum = get_sum(transpose_timbre[10]) row.append(seg_timbre_sum) row.append(transpose_timbre[11][i]) seg_timbre_avg= get_avg(transpose_timbre[11]) row.append(seg_timbre_avg) seg_timbre_max= get_max(transpose_timbre[11]) row.append(seg_timbre_max) seg_timbre_min = get_min(transpose_timbre[11]) row.append(seg_timbre_min) seg_timbre_stddev= get_stddev(transpose_timbre[11]) row.append(seg_timbre_stddev) seg_timbre_count = get_count(transpose_timbre[11]) row.append(seg_timbre_count) seg_timbre_sum = get_sum(transpose_timbre[11]) row.append(seg_timbre_sum) for item in row_seg2_padding: row.append(item) writer.writerow(row) row=[] row=gral_info[:] # "--------tatums---------------" tatms_c = hdf5_getters.get_tatums_confidence(h5) group_index=5 row_front=padding(245) #blank spaces left in front of tatums row=[] row=gral_info[:] for i,item in enumerate(tatms_c): row.append(group_index) row.append(i) for item in row_front: #appending blank spaces at the front of the row row.append(item) row.append(tatms_c[i]) tatms_c_avg= get_avg(tatms_c) row.append(tatms_c_avg) tatms_c_max= get_max(tatms_c) row.append(tatms_c_max) tatms_c_min = get_min(tatms_c) row.append(tatms_c_min) tatms_c_stddev= get_stddev(tatms_c) row.append(tatms_c_stddev) tatms_c_count = get_count(tatms_c) row.append(tatms_c_count) tatms_c_sum = get_sum(tatms_c) row.append(tatms_c_sum) tatms_start = hdf5_getters.get_tatums_start(h5) row.append(tatms_start[i]) tatms_start_avg= get_avg(tatms_start) row.append(tatms_start_avg) tatms_start_max= get_max(tatms_start) row.append(tatms_start_max) tatms_start_min = get_min(tatms_start) row.append(tatms_start_min) tatms_start_stddev= get_stddev(tatms_start) row.append(tatms_start_stddev) tatms_start_count = get_count(tatms_start) row.append(tatms_start_count) tatms_start_sum = get_sum(tatms_start) row.append(tatms_start_sum) writer.writerow(row) row=[] row=gral_info[:] transpose_pitch= seg_pitch.transpose() #this is to tranpose the matrix,so we can have 12 rows #arrays containing the aggregate values of the 12 rows seg_pitch_avg=[] seg_pitch_max=[] seg_pitch_min=[] seg_pitch_stddev=[] seg_pitch_count=[] seg_pitch_sum=[] i=0 #Getting the aggregate values in the pitches array for row in transpose_pitch: seg_pitch_avg.append(get_avg(row)) seg_pitch_max.append(get_max(row)) seg_pitch_min.append(get_min(row)) seg_pitch_stddev.append(get_stddev(row)) seg_pitch_count.append(get_count(row)) seg_pitch_sum.append(get_sum(row)) i=i+1 #extracting information from the timbre array transpose_timbre = seg_pitch.transpose() #tranposing matrix, to have 12 rows #arrays containing the aggregate values of the 12 rows seg_timbre_avg=[] seg_timbre_max=[] seg_timbre_min=[] seg_timbre_stddev=[] seg_timbre_count=[] seg_timbre_sum=[] i=0 for row in transpose_timbre: seg_timbre_avg.append(get_avg(row)) seg_timbre_max.append(get_max(row)) seg_timbre_min.append(get_min(row)) seg_timbre_stddev.append(get_stddev(row)) seg_timbre_count.append(get_count(row)) seg_timbre_sum.append(get_sum(row)) i=i+1 h5.close() count=count+1; print count;
def main(): outputFileName = sys.argv[2] outputFile1 = open(outputFileName, 'w') csvRowString = "" ################################################# #if you want to prompt the user for the order of attributes in the csv, #leave the prompt boolean set to True #else, set 'prompt' to False and set the order of attributes in the 'else' #clause prompt = False ################################################# if prompt == True: while prompt: prompt = False csvAttributeString = raw_input( "\n\nIn what order would you like the colums of the CSV file?\n" + "Please delineate with commas. The options are: " + "AlbumName, AlbumID, ArtistID, ArtistLatitude, ArtistLocation, ArtistLongitude," + " ArtistName, Danceability, Duration, KeySignature, KeySignatureConfidence, Tempo," + " SongID, TimeSignature, TimeSignatureConfidence, Title, and Year.\n\n" + "For example, you may write \"Title, Tempo, Duration\"...\n\n" + "...or exit by typing 'exit'.\n\n") csvAttributeList = re.split('\W+', csvAttributeString) for i, v in enumerate(csvAttributeList): csvAttributeList[i] = csvAttributeList[i].lower() for attribute in csvAttributeList: # print "Here is the attribute: " + attribute + " \n" if attribute == 'AlbumID'.lower(): csvRowString += 'AlbumID' elif attribute == 'AlbumName'.lower(): csvRowString += 'AlbumName' elif attribute == 'ArtistID'.lower(): csvRowString += 'ArtistID' elif attribute == 'ArtistLatitude'.lower(): csvRowString += 'ArtistLatitude' elif attribute == 'ArtistLocation'.lower(): csvRowString += 'ArtistLocation' elif attribute == 'ArtistLongitude'.lower(): csvRowString += 'ArtistLongitude' elif attribute == 'ArtistName'.lower(): csvRowString += 'ArtistName' elif attribute == 'Danceability'.lower(): csvRowString += 'Danceability' elif attribute == 'Duration'.lower(): csvRowString += 'Duration' elif attribute == 'KeySignature'.lower(): csvRowString += 'KeySignature' elif attribute == 'KeySignatureConfidence'.lower(): csvRowString += 'KeySignatureConfidence' elif attribute == 'SongID'.lower(): csvRowString += "SongID" elif attribute == 'Tempo'.lower(): csvRowString += 'Tempo' elif attribute == 'TimeSignature'.lower(): csvRowString += 'TimeSignature' elif attribute == 'TimeSignatureConfidence'.lower(): csvRowString += 'TimeSignatureConfidence' elif attribute == 'Title'.lower(): csvRowString += 'Title' elif attribute == 'Year'.lower(): csvRowString += 'Year' elif attribute == 'Exit'.lower(): sys.exit() else: prompt = True print "==============" print "I believe there has been an error with the input." print "==============" break csvRowString += "," lastIndex = len(csvRowString) csvRowString = csvRowString[0:lastIndex - 1] csvRowString += "\n" # outputFile1.write(csvRowString); csvRowString = "" #else, if you want to hard code the order of the csv file and not prompt #the user, else: ################################################# #change the order of the csv file here #Default is to list all available attributes (in alphabetical order) csvRowString = ( "SongID,AlbumID,AlbumName,ArtistID,ArtistLatitude,ArtistLocation," + "ArtistLongitude,ArtistFamiliarity,ArtistHotttnesss,ArtistName," + "ArtistMBTags,ArtistTerms," + "Danceability,Energy,Duration,KeySignature," + "KeySignatureConfidence,Loudness,Mode,Hotttnesss,Tempo,TimeSignature,TimeSignatureConfidence," + "Title,Year") ################################################# csvAttributeList = re.split('\W+', csvRowString) for i, v in enumerate(csvAttributeList): csvAttributeList[i] = csvAttributeList[i].lower() # outputFile1.write("SongNumber,"); # outputFile1.write(csvRowString + "\n"); csvRowString = "" ################################################# #Set the basedir here, the root directory from which the search #for files stored in a (hierarchical data structure) will originate basedir = sys.argv[1] # "." As the default means the current directory ext = ".h5" #Set the extension here. H5 is the extension for HDF5 files. ################################################# #FOR LOOP for root, dirs, files in os.walk(basedir): files = glob.glob(os.path.join(root, '*' + ext)) for f in files: print f songH5File = hdf5_getters.open_h5_file_read(f) song = Song(str(hdf5_getters.get_song_id(songH5File))) testDanceability = hdf5_getters.get_danceability(songH5File) # print type(testDanceability) # print ("Here is the danceability: ") + str(testDanceability) song.artistID = str(hdf5_getters.get_artist_id(songH5File)) song.albumID = str(hdf5_getters.get_release_7digitalid(songH5File)) song.albumName = str(hdf5_getters.get_release(songH5File)) song.artistLatitude = str( hdf5_getters.get_artist_latitude(songH5File)) song.artistLocation = str( hdf5_getters.get_artist_location(songH5File)) song.artistLongitude = str( hdf5_getters.get_artist_longitude(songH5File)) song.artistFamiliarity = str( hdf5_getters.get_artist_familiarity(songH5File)) song.artistHotttnesss = str( hdf5_getters.get_artist_hotttnesss(songH5File)) song.artistName = str(hdf5_getters.get_artist_name(songH5File)) song.artistMBTags = ','.join( hdf5_getters.get_artist_mbtags(songH5File)) # song.artistMBTagsCount = ','.join(hdf5_getters.get_artist_mbtags_count(songH5File)) song.artistTerms = ','.join( hdf5_getters.get_artist_terms(songH5File)) song.danceability = str(hdf5_getters.get_danceability(songH5File)) song.energy = str(hdf5_getters.get_energy(songH5File)) song.duration = str(hdf5_getters.get_duration(songH5File)) # song.setGenreList() song.keySignature = str(hdf5_getters.get_key(songH5File)) song.keySignatureConfidence = str( hdf5_getters.get_key_confidence(songH5File)) song.loudness = str(hdf5_getters.get_loudness(songH5File)) song.mode = str(hdf5_getters.get_mode(songH5File)) # song.lyrics = None # song.popularity = None song.hotttnesss = str(hdf5_getters.get_song_hotttnesss(songH5File)) song.tempo = str(hdf5_getters.get_tempo(songH5File)) song.timeSignature = str( hdf5_getters.get_time_signature(songH5File)) song.timeSignatureConfidence = str( hdf5_getters.get_time_signature_confidence(songH5File)) song.title = str(hdf5_getters.get_title(songH5File)) song.year = str(hdf5_getters.get_year(songH5File)) #print song count # csvRowString += str(song.songCount) + "," rowString = json.dumps({ 'AlbumID': song.albumID, 'AlbumName': song.albumName, 'ArtistID': song.artistID, 'ArtistLatitude': song.artistLatitude, 'ArtistLocation': song.artistLocation, 'ArtistLongitude': song.artistLongitude, 'ArtistFamiliarity': song.artistFamiliarity, 'ArtistHotttnesss': song.artistHotttnesss, 'ArtistName': song.artistName, 'ArtistMBTags': song.artistMBTags, 'ArtistTerms': song.artistTerms, 'Danceability': song.danceability, 'Energy': song.energy, 'Duration': song.duration, 'KeySignature': song.keySignature, 'KeySignatureConfidence': song.keySignatureConfidence, 'Loudness': song.loudness, 'Mode': song.mode, 'Hotttnesss': song.hotttnesss, 'Tempo': song.tempo, 'SongID': song.id, 'TimeSignature': song.timeSignature, 'TimeSignatureConfidence': song.timeSignatureConfidence, 'Title': song.title, 'Year': song.year, }) #Remove the final comma from each row in the csv rowString += "\n" outputFile1.write(rowString) songH5File.close() outputFile1.close()
def data_to_flat_file(basedir, ext='.h5'): """This function extract the information from the tables and creates the flat file.""" count = 0 #song counter list_to_write = [] row_to_write = "" writer = csv.writer(open("metadata_wholeA.csv", "wb")) for root, dirs, files in os.walk(basedir): files = glob.glob(os.path.join(root, '*' + ext)) for f in files: print f #the name of the file h5 = hdf5_getters.open_h5_file_read(f) title = hdf5_getters.get_title(h5) title = title.replace('"', '') comma = title.find(',') #eliminating commas in the title if comma != -1: print title time.sleep(1) album = hdf5_getters.get_release(h5) album = album.replace('"', '') #eliminating commas in the album comma = album.find(',') if comma != -1: print album time.sleep(1) artist_name = hdf5_getters.get_artist_name(h5) comma = artist_name.find(',') if comma != -1: print artist_name time.sleep(1) artist_name = artist_name.replace('"', '') #eliminating double quotes duration = hdf5_getters.get_duration(h5) samp_rt = hdf5_getters.get_analysis_sample_rate(h5) artist_7digitalid = hdf5_getters.get_artist_7digitalid(h5) artist_fam = hdf5_getters.get_artist_familiarity(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(artist_fam) == True: artist_fam = -1 artist_hotness = hdf5_getters.get_artist_hotttnesss(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(artist_hotness) == True: artist_hotness = -1 artist_id = hdf5_getters.get_artist_id(h5) artist_lat = hdf5_getters.get_artist_latitude(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(artist_lat) == True: artist_lat = -1 artist_loc = hdf5_getters.get_artist_location(h5) #checks artist_loc to see if it is a hyperlink if it is set as empty string artist_loc = artist_loc.replace(",", "\,") if artist_loc.startswith("<a"): artist_loc = "" if len(artist_loc) > 100: artist_loc = "" artist_lon = hdf5_getters.get_artist_longitude(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(artist_lon) == True: artist_lon = -1 artist_mbid = hdf5_getters.get_artist_mbid(h5) artist_pmid = hdf5_getters.get_artist_playmeid(h5) audio_md5 = hdf5_getters.get_audio_md5(h5) danceability = hdf5_getters.get_danceability(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(danceability) == True: danceability = -1 end_fade_in = hdf5_getters.get_end_of_fade_in(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(end_fade_in) == True: end_fade_in = -1 energy = hdf5_getters.get_energy(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(energy) == True: energy = -1 song_key = hdf5_getters.get_key(h5) key_c = hdf5_getters.get_key_confidence(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(key_c) == True: key_c = -1 loudness = hdf5_getters.get_loudness(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(loudness) == True: loudness = -1 mode = hdf5_getters.get_mode(h5) mode_conf = hdf5_getters.get_mode_confidence(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(mode_conf) == True: mode_conf = -1 release_7digitalid = hdf5_getters.get_release_7digitalid(h5) song_hot = hdf5_getters.get_song_hotttnesss(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(song_hot) == True: song_hot = -1 song_id = hdf5_getters.get_song_id(h5) start_fade_out = hdf5_getters.get_start_of_fade_out(h5) tempo = hdf5_getters.get_tempo(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(tempo) == True: tempo = -1 time_sig = hdf5_getters.get_time_signature(h5) time_sig_c = hdf5_getters.get_time_signature_confidence(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(time_sig_c) == True: time_sig_c = -1 track_id = hdf5_getters.get_track_id(h5) track_7digitalid = hdf5_getters.get_track_7digitalid(h5) year = hdf5_getters.get_year(h5) bars_c = hdf5_getters.get_bars_confidence(h5) bars_c_avg = get_avg(bars_c) bars_c_max = get_max(bars_c) bars_c_min = get_min(bars_c) bars_c_stddev = get_stddev(bars_c) bars_c_count = get_count(bars_c) bars_c_sum = get_sum(bars_c) bars_start = hdf5_getters.get_bars_start(h5) bars_start_avg = get_avg(bars_start) bars_start_max = get_max(bars_start) bars_start_min = get_min(bars_start) bars_start_stddev = get_stddev(bars_start) bars_start_count = get_count(bars_start) bars_start_sum = get_sum(bars_start) beats_c = hdf5_getters.get_beats_confidence(h5) beats_c_avg = get_avg(beats_c) beats_c_max = get_max(beats_c) beats_c_min = get_min(beats_c) beats_c_stddev = get_stddev(beats_c) beats_c_count = get_count(beats_c) beats_c_sum = get_sum(beats_c) beats_start = hdf5_getters.get_beats_start(h5) beats_start_avg = get_avg(beats_start) beats_start_max = get_max(beats_start) beats_start_min = get_min(beats_start) beats_start_stddev = get_stddev(beats_start) beats_start_count = get_count(beats_start) beats_start_sum = get_sum(beats_start) sec_c = hdf5_getters.get_sections_confidence(h5) sec_c_avg = get_avg(sec_c) sec_c_max = get_max(sec_c) sec_c_min = get_min(sec_c) sec_c_stddev = get_stddev(sec_c) sec_c_count = get_count(sec_c) sec_c_sum = get_sum(sec_c) sec_start = hdf5_getters.get_sections_start(h5) sec_start_avg = get_avg(sec_start) sec_start_max = get_max(sec_start) sec_start_min = get_min(sec_start) sec_start_stddev = get_stddev(sec_start) sec_start_count = get_count(sec_start) sec_start_sum = get_sum(sec_start) seg_c = hdf5_getters.get_segments_confidence(h5) seg_c_avg = get_avg(seg_c) seg_c_max = get_max(seg_c) seg_c_min = get_min(seg_c) seg_c_stddev = get_stddev(seg_c) seg_c_count = get_count(seg_c) seg_c_sum = get_sum(seg_c) seg_loud_max = hdf5_getters.get_segments_loudness_max(h5) seg_loud_max_avg = get_avg(seg_loud_max) seg_loud_max_max = get_max(seg_loud_max) seg_loud_max_min = get_min(seg_loud_max) seg_loud_max_stddev = get_stddev(seg_loud_max) seg_loud_max_count = get_count(seg_loud_max) seg_loud_max_sum = get_sum(seg_loud_max) seg_loud_max_time = hdf5_getters.get_segments_loudness_max_time(h5) seg_loud_max_time_avg = get_avg(seg_loud_max_time) seg_loud_max_time_max = get_max(seg_loud_max_time) seg_loud_max_time_min = get_min(seg_loud_max_time) seg_loud_max_time_stddev = get_stddev(seg_loud_max_time) seg_loud_max_time_count = get_count(seg_loud_max_time) seg_loud_max_time_sum = get_sum(seg_loud_max_time) seg_loud_start = hdf5_getters.get_segments_loudness_start(h5) seg_loud_start_avg = get_avg(seg_loud_start) seg_loud_start_max = get_max(seg_loud_start) seg_loud_start_min = get_min(seg_loud_start) seg_loud_start_stddev = get_stddev(seg_loud_start) seg_loud_start_count = get_count(seg_loud_start) seg_loud_start_sum = get_sum(seg_loud_start) seg_pitch = hdf5_getters.get_segments_pitches(h5) pitch_size = len(seg_pitch) seg_start = hdf5_getters.get_segments_start(h5) seg_start_avg = get_avg(seg_start) seg_start_max = get_max(seg_start) seg_start_min = get_min(seg_start) seg_start_stddev = get_stddev(seg_start) seg_start_count = get_count(seg_start) seg_start_sum = get_sum(seg_start) seg_timbre = hdf5_getters.get_segments_timbre(h5) tatms_c = hdf5_getters.get_tatums_confidence(h5) tatms_c_avg = get_avg(tatms_c) tatms_c_max = get_max(tatms_c) tatms_c_min = get_min(tatms_c) tatms_c_stddev = get_stddev(tatms_c) tatms_c_count = get_count(tatms_c) tatms_c_sum = get_sum(tatms_c) tatms_start = hdf5_getters.get_tatums_start(h5) tatms_start_avg = get_avg(tatms_start) tatms_start_max = get_max(tatms_start) tatms_start_min = get_min(tatms_start) tatms_start_stddev = get_stddev(tatms_start) tatms_start_count = get_count(tatms_start) tatms_start_sum = get_sum(tatms_start) #Getting the genres genre_set = 0 #flag to see if the genre has been set or not art_trm = hdf5_getters.get_artist_terms(h5) trm_freq = hdf5_getters.get_artist_terms_freq(h5) trn_wght = hdf5_getters.get_artist_terms_weight(h5) a_mb_tags = hdf5_getters.get_artist_mbtags(h5) genre_indexes = get_genre_indexes( trm_freq) #index of the highest freq final_genre = [] genres_so_far = [] for i in range(len(genre_indexes)): genre_tmp = get_genre( art_trm, genre_indexes[i] ) #genre that corresponds to the highest freq genres_so_far = genre_dict.get_genre_in_dict( genre_tmp) #getting the genre from the dictionary if len(genres_so_far) != 0: for i in genres_so_far: final_genre.append(i) genre_set = 1 #genre was found in dictionary if genre_set == 1: col_num = [] for genre in final_genre: column = int( genre) #getting the column number of the genre col_num.append(column) genre_array = genre_columns(col_num) #genre array else: genre_array = genre_columns( -1) #the genre was not found in the dictionary transpose_pitch = seg_pitch.transpose( ) #this is to tranpose the matrix,so we can have 12 rows #arrays containing the aggregate values of the 12 rows seg_pitch_avg = [] seg_pitch_max = [] seg_pitch_min = [] seg_pitch_stddev = [] seg_pitch_count = [] seg_pitch_sum = [] i = 0 #Getting the aggregate values in the pitches array for row in transpose_pitch: seg_pitch_avg.append(get_avg(row)) seg_pitch_max.append(get_max(row)) seg_pitch_min.append(get_min(row)) seg_pitch_stddev.append(get_stddev(row)) seg_pitch_count.append(get_count(row)) seg_pitch_sum.append(get_sum(row)) i = i + 1 #extracting information from the timbre array transpose_timbre = seg_pitch.transpose( ) #tranposing matrix, to have 12 rows #arrays containing the aggregate values of the 12 rows seg_timbre_avg = [] seg_timbre_max = [] seg_timbre_min = [] seg_timbre_stddev = [] seg_timbre_count = [] seg_timbre_sum = [] i = 0 for row in transpose_timbre: seg_timbre_avg.append(get_avg(row)) seg_timbre_max.append(get_max(row)) seg_timbre_min.append(get_min(row)) seg_timbre_stddev.append(get_stddev(row)) seg_timbre_count.append(get_count(row)) seg_timbre_sum.append(get_sum(row)) i = i + 1 #Writing to the flat file writer.writerow([ title, album, artist_name, year, duration, seg_start_count, tempo ]) h5.close() count = count + 1 print count
row += [h5.get_artist_terms(ds)] row += [h5.get_artist_terms_freq(ds)] row += [h5.get_artist_terms_weight(ds)] row += [h5.get_danceability(ds)] row += [h5.get_energy(ds)] row += [h5.get_key(ds)] row += [h5.get_mode(ds)] row += [h5.get_loudness(ds)] row += [ parent_folder + '/' + sub_folder + '/' + child_folder + '/' ] row += [file] row += [h5.get_duration(ds)] row += [h5.get_artist_familiarity(ds)] row += [h5.get_similar_artists(ds)] row += [h5.get_artist_id(ds)] row += [h5.get_title(ds)] row += [h5.get_song_hotttnesss(ds)] row += [h5.get_year(ds)] row += [h5.get_artist_latitude(ds)] row += [h5.get_artist_longitude(ds)] row += [ get_midi_name_from_matched( file[:-3], matched_scores) ] ds.close() csv_writer.writerow(row)
def func_to_extract_features(filename): """ This function does 3 simple things: - open the song file - get artist ID and put it - close the file """ global cntnan global listfeatures cf = [] h5 = GETTERS.open_h5_file_read(filename) nanfound = 0 #Get target feature: song hotness #FEATURE 0 song_hotness = GETTERS.get_song_hotttnesss(h5) if math.isnan(song_hotness): nanfound = 1 cntnan = cntnan + 1 else: cf.append(song_hotness) #FEATURE 1 #Get song loudness song_loudness = GETTERS.get_loudness(h5) if math.isnan(song_loudness): nanfound = 1 cntnan = cntnan + 1 else: cf.append(song_loudness) #FEATURE 2 #Get key of the song song_key = GETTERS.get_key(h5) if math.isnan(song_key): nanfound = 1 cntnan = cntnan + 1 else: cf.append(song_key) #FEATURE 3 #Get duration of the song song_duration = GETTERS.get_duration(h5) if math.isnan(song_duration): nanfound = 1 cntnan = cntnan + 1 else: cf.append(song_duration) #FEATURE 4-15 #Get Average Pitch Class across all segments #Get the pitches (12 pitches histogram for each segment) pitches = GETTERS.get_segments_pitches(h5) M = np.mat(pitches) meanpitches = M.mean(axis=0) pitches_arr = np.asarray(meanpitches) pitches_list = [] for i in range(0,12): pitches_list.append(pitches_arr[0][i]) cf.append(pitches_list) #FEATURE 16, 27 #Get Average Timbre Class across all segments timbres = GETTERS.get_segments_timbre(h5) M = np.mat(timbres) meantimbres = M.mean(axis=0) timbre_arr = np.asarray(meantimbres) timbre_list = [] for i in range(0,12): timbre_list.append(timbre_arr[0][i]) cf.append(timbre_list) #FEATURE 28 #Get song year song_year = GETTERS.get_year(h5) if song_year == 0: nanfound = 1 cntnan = cntnan + 1 else: cf.append(song_year) #FEATURE 29 #Get song tempo song_tempo = GETTERS.get_tempo(h5) cf.append(song_tempo) #Feature 30 #Get max loudness for each segment max_loudness_arr = GETTERS.get_segments_loudness_max(h5) start_loudness_arr = GETTERS.get_segments_loudness_start(h5) if nanfound == 0: cf.append(max(max_loudness_arr)-min(start_loudness_arr)) #Feature 31 artist_familiarity = GETTERS.get_artist_familiarity(h5) cf.append(artist_familiarity) #Feature 32 artist_hotness = GETTERS.get_artist_hotttnesss(h5) if math.isnan(artist_hotness): nanfound = 1 cntnan = cntnan + 1 else: cf.append(artist_hotness) if nanfound == 0: strlist = list_to_csv(cf) listfeatures.append(strlist) h5.close()
def data_to_flat_file(basedir, ext='.h5'): """ This function extracts the information from the tables and creates the flat file. """ count = 0 #song counter list_to_write = [] group_index = 0 row_to_write = "" writer = csv.writer(open("complete.csv", "wb")) for root, dirs, files in os.walk(basedir): files = glob.glob(os.path.join(root, '*' + ext)) for f in files: row = [] print f h5 = hdf5_getters.open_h5_file_read(f) title = hdf5_getters.get_title(h5) title = title.replace('"', '') row.append(title) comma = title.find(',') if comma != -1: print title time.sleep(1) album = hdf5_getters.get_release(h5) album = album.replace('"', '') row.append(album) comma = album.find(',') if comma != -1: print album time.sleep(1) artist_name = hdf5_getters.get_artist_name(h5) comma = artist_name.find(',') if comma != -1: print artist_name time.sleep(1) artist_name = artist_name.replace('"', '') row.append(artist_name) duration = hdf5_getters.get_duration(h5) row.append(duration) samp_rt = hdf5_getters.get_analysis_sample_rate(h5) row.append(samp_rt) artist_7digitalid = hdf5_getters.get_artist_7digitalid(h5) row.append(artist_7digitalid) artist_fam = hdf5_getters.get_artist_familiarity(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(artist_fam) == True: artist_fam = -1 row.append(artist_fam) artist_hotness = hdf5_getters.get_artist_hotttnesss(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(artist_hotness) == True: artist_hotness = -1 row.append(artist_hotness) artist_id = hdf5_getters.get_artist_id(h5) row.append(artist_id) artist_lat = hdf5_getters.get_artist_latitude(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(artist_lat) == True: artist_lat = -1 row.append(artist_lat) artist_loc = hdf5_getters.get_artist_location(h5) row.append(artist_loc) artist_lon = hdf5_getters.get_artist_longitude(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(artist_lon) == True: artist_lon = -1 row.append(artist_lon) artist_mbid = hdf5_getters.get_artist_mbid(h5) row.append(artist_mbid) #Getting the genre art_trm = hdf5_getters.get_artist_terms(h5) trm_freq = hdf5_getters.get_artist_terms_freq(h5) trn_wght = hdf5_getters.get_artist_terms_weight(h5) a_mb_tags = hdf5_getters.get_artist_mbtags(h5) genre_indexes = get_genre_indexes( trm_freq) #index of the highest freq genre_set = 0 #flag to see if the genre has been set or not final_genre = [] genres_so_far = [] for i in range(len(genre_indexes)): genre_tmp = get_genre( art_trm, genre_indexes[i] ) #genre that corresponds to the highest freq genres_so_far = genre_dict.get_genre_in_dict( genre_tmp) #getting the genre from the dictionary if len(genres_so_far) != 0: for i in genres_so_far: final_genre.append(i) genre_set = 1 if genre_set == 1: col_num = [] for i in final_genre: column = int(i) #getting the column number of the genre col_num.append(column) genre_array = genre_columns(col_num) #genre array for i in range(len( genre_array)): #appending the genre_array to the row row.append(genre_array[i]) else: genre_array = genre_columns( -1 ) #when there is no genre matched, return an array of [0...0] for i in range(len( genre_array)): #appending the genre_array to the row row.append(genre_array[i]) artist_pmid = hdf5_getters.get_artist_playmeid(h5) row.append(artist_pmid) audio_md5 = hdf5_getters.get_audio_md5(h5) row.append(audio_md5) danceability = hdf5_getters.get_danceability(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(danceability) == True: danceability = -1 row.append(danceability) end_fade_in = hdf5_getters.get_end_of_fade_in(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(end_fade_in) == True: end_fade_in = -1 row.append(end_fade_in) energy = hdf5_getters.get_energy(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(energy) == True: energy = -1 row.append(energy) song_key = hdf5_getters.get_key(h5) row.append(song_key) key_c = hdf5_getters.get_key_confidence(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(key_c) == True: key_c = -1 row.append(key_c) loudness = hdf5_getters.get_loudness(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(loudness) == True: loudness = -1 row.append(loudness) mode = hdf5_getters.get_mode(h5) row.append(mode) mode_conf = hdf5_getters.get_mode_confidence(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(mode_conf) == True: mode_conf = -1 row.append(mode_conf) release_7digitalid = hdf5_getters.get_release_7digitalid(h5) row.append(release_7digitalid) song_hot = hdf5_getters.get_song_hotttnesss(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(song_hot) == True: song_hot = -1 row.append(song_hot) song_id = hdf5_getters.get_song_id(h5) row.append(song_id) start_fade_out = hdf5_getters.get_start_of_fade_out(h5) row.append(start_fade_out) tempo = hdf5_getters.get_tempo(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(tempo) == True: tempo = -1 row.append(tempo) time_sig = hdf5_getters.get_time_signature(h5) row.append(time_sig) time_sig_c = hdf5_getters.get_time_signature_confidence(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(time_sig_c) == True: time_sig_c = -1 row.append(time_sig_c) track_id = hdf5_getters.get_track_id(h5) row.append(track_id) track_7digitalid = hdf5_getters.get_track_7digitalid(h5) row.append(track_7digitalid) year = hdf5_getters.get_year(h5) row.append(year) bars_c = hdf5_getters.get_bars_confidence(h5) bars_start = hdf5_getters.get_bars_start(h5) row_bars_padding = padding( 245 ) #this is the array that will be attached at the end of th row #--------------bars---------------" gral_info = [] gral_info = row[:] empty = [] for i, item in enumerate(bars_c): row.append(group_index) row.append(i) row.append(bars_c[i]) bars_c_avg = get_avg(bars_c) row.append(bars_c_avg) bars_c_max = get_max(bars_c) row.append(bars_c_max) bars_c_min = get_min(bars_c) row.append(bars_c_min) bars_c_stddev = get_stddev(bars_c) row.append(bars_c_stddev) bars_c_count = get_count(bars_c) row.append(bars_c_count) bars_c_sum = get_sum(bars_c) row.append(bars_c_sum) row.append(bars_start[i]) bars_start_avg = get_avg(bars_start) row.append(bars_start_avg) bars_start_max = get_max(bars_start) row.append(bars_start_max) bars_start_min = get_min(bars_start) row.append(bars_start_min) bars_start_stddev = get_stddev(bars_start) row.append(bars_start_stddev) bars_start_count = get_count(bars_start) row.append(bars_start_count) bars_start_sum = get_sum(bars_start) row.append(bars_start_sum) for i in row_bars_padding: row.append(i) writer.writerow(row) row = [] row = gral_info[:] #--------beats---------------" beats_c = hdf5_getters.get_beats_confidence(h5) group_index = 1 row = [] row = gral_info[:] row_front = padding( 14) #blanks left in front of the row(empty spaces for bars) row_beats_padding = padding(231) for i, item in enumerate(beats_c): row.append(group_index) row.append(i) for index in row_front: #padding blanks in front of the beats row.append(index) row.append(beats_c[i]) beats_c_avg = get_avg(beats_c) row.append(beats_c_avg) beats_c_max = get_max(beats_c) row.append(beats_c_max) beats_c_min = get_min(beats_c) row.append(beats_c_min) beats_c_stddev = get_stddev(beats_c) row.append(beats_c_stddev) beats_c_count = get_count(beats_c) row.append(beats_c_count) beats_c_sum = get_sum(beats_c) row.append(beats_c_sum) beats_start = hdf5_getters.get_beats_start(h5) row.append(beats_start[i]) beats_start_avg = get_avg(beats_start) row.append(beats_start_avg) beats_start_max = get_max(beats_start) row.append(beats_start_max) beats_start_min = get_min(beats_start) row.append(beats_start_min) beats_start_stddev = get_stddev(beats_start) row.append(beats_start_stddev) beats_start_count = get_count(beats_start) row.append(beats_start_count) beats_start_sum = get_sum(beats_start) row.append(beats_start_sum) for i in row_beats_padding: row.append(i) writer.writerow(row) row = [] row = gral_info[:] # "--------sections---------------" row_sec_padding = padding( 217) #blank spaces left at the end of the row sec_c = hdf5_getters.get_sections_confidence(h5) group_index = 2 row = [] row = gral_info[:] row_front = padding( 28) #blank spaces left in front(empty spaces for bars,beats) for i, item in enumerate(sec_c): row.append(group_index) row.append(i) for index in row_front: #padding blanks in front of the sections row.append(index) row.append(sec_c[i]) sec_c_avg = get_avg(sec_c) row.append(sec_c_avg) sec_c_max = get_max(sec_c) row.append(sec_c_max) sec_c_min = get_min(sec_c) row.append(sec_c_min) sec_c_stddev = get_stddev(sec_c) row.append(sec_c_stddev) sec_c_count = get_count(sec_c) row.append(sec_c_count) sec_c_sum = get_sum(sec_c) row.append(sec_c_sum) sec_start = hdf5_getters.get_sections_start(h5) row.append(sec_start[i]) sec_start_avg = get_avg(sec_start) row.append(sec_start_avg) sec_start_max = get_max(sec_start) row.append(sec_start_max) sec_start_min = get_min(sec_start) row.append(sec_start_min) sec_start_stddev = get_stddev(sec_start) row.append(sec_start_stddev) sec_start_count = get_count(sec_start) row.append(sec_start_count) sec_start_sum = get_sum(sec_start) row.append(sec_start_sum) for i in row_sec_padding: #appending the blank spaces at the end of the row row.append(i) writer.writerow(row) row = [] row = gral_info[:] #--------segments---------------" row_seg_padding = padding(182) #blank spaces at the end of the row row_front = padding(42) #blank spaces left in front of segments seg_c = hdf5_getters.get_segments_confidence(h5) group_index = 3 row = [] row = gral_info[:] for i, item in enumerate(seg_c): row.append(group_index) row.append(i) for index in row_front: #padding blanks in front of the segments row.append(index) row.append(seg_c[i]) seg_c_avg = get_avg(seg_c) row.append(seg_c_avg) seg_c_max = get_max(seg_c) row.append(seg_c_max) seg_c_min = get_min(seg_c) row.append(seg_c_min) seg_c_stddev = get_stddev(seg_c) row.append(seg_c_stddev) seg_c_count = get_count(seg_c) row.append(seg_c_count) seg_c_sum = get_sum(seg_c) row.append(seg_c_sum) seg_loud_max = hdf5_getters.get_segments_loudness_max(h5) row.append(seg_loud_max[i]) seg_loud_max_avg = get_avg(seg_loud_max) row.append(seg_loud_max_avg) seg_loud_max_max = get_max(seg_loud_max) row.append(seg_loud_max_max) seg_loud_max_min = get_min(seg_loud_max) row.append(seg_loud_max_min) seg_loud_max_stddev = get_stddev(seg_loud_max) row.append(seg_loud_max_stddev) seg_loud_max_count = get_count(seg_loud_max) row.append(seg_loud_max_count) seg_loud_max_sum = get_sum(seg_loud_max) row.append(seg_loud_max_sum) seg_loud_max_time = hdf5_getters.get_segments_loudness_max_time( h5) row.append(seg_loud_max_time[i]) seg_loud_max_time_avg = get_avg(seg_loud_max_time) row.append(seg_loud_max_time_avg) seg_loud_max_time_max = get_max(seg_loud_max_time) row.append(seg_loud_max_time_max) seg_loud_max_time_min = get_min(seg_loud_max_time) row.append(seg_loud_max_time_min) seg_loud_max_time_stddev = get_stddev(seg_loud_max_time) row.append(seg_loud_max_time_stddev) seg_loud_max_time_count = get_count(seg_loud_max_time) row.append(seg_loud_max_time_count) seg_loud_max_time_sum = get_sum(seg_loud_max_time) row.append(seg_loud_max_time_sum) seg_loud_start = hdf5_getters.get_segments_loudness_start(h5) row.append(seg_loud_start[i]) seg_loud_start_avg = get_avg(seg_loud_start) row.append(seg_loud_start_avg) seg_loud_start_max = get_max(seg_loud_start) row.append(seg_loud_start_max) seg_loud_start_min = get_min(seg_loud_start) row.append(seg_loud_start_min) seg_loud_start_stddev = get_stddev(seg_loud_start) row.append(seg_loud_start_stddev) seg_loud_start_count = get_count(seg_loud_start) row.append(seg_loud_start_count) seg_loud_start_sum = get_sum(seg_loud_start) row.append(seg_loud_start_sum) seg_start = hdf5_getters.get_segments_start(h5) row.append(seg_start[i]) seg_start_avg = get_avg(seg_start) row.append(seg_start_avg) seg_start_max = get_max(seg_start) row.append(seg_start_max) seg_start_min = get_min(seg_start) row.append(seg_start_min) seg_start_stddev = get_stddev(seg_start) row.append(seg_start_stddev) seg_start_count = get_count(seg_start) row.append(seg_start_count) seg_start_sum = get_sum(seg_start) row.append(seg_start_sum) for i in row_seg_padding: #appending blank spaces at the end of the row row.append(i) writer.writerow(row) row = [] row = gral_info[:] #----------segments pitch and timbre---------------" row_seg2_padding = padding( 14) #blank spaces left at the end of the row row_front = padding( 77) #blank spaces left at the front of the segments and timbre seg_pitch = hdf5_getters.get_segments_pitches(h5) transpose_pitch = seg_pitch.transpose( ) #this is to tranpose the matrix,so we can have 12 rows group_index = 4 row = [] row = gral_info[:] for i, item in enumerate(transpose_pitch[0]): row.append(group_index) row.append(i) for index in row_front: #padding blanks in front of segments and timbre row.append(index) row.append(transpose_pitch[0][i]) seg_pitch_avg = get_avg(transpose_pitch[0]) row.append(seg_pitch_avg) seg_pitch_max = get_max(transpose_pitch[0]) row.append(seg_pitch_max) seg_pitch_min = get_min(transpose_pitch[0]) row.append(seg_pitch_min) seg_pitch_stddev = get_stddev(transpose_pitch[0]) row.append(seg_pitch_stddev) seg_pitch_count = get_count(transpose_pitch[0]) row.append(seg_pitch_count) seg_pitch_sum = get_sum(transpose_pitch[0]) row.append(seg_pitch_sum) row.append(transpose_pitch[1][i]) seg_pitch_avg = get_avg(transpose_pitch[1]) row.append(seg_pitch_avg) seg_pitch_max = get_max(transpose_pitch[1]) row.append(seg_pitch_max) seg_pitch_min = get_min(transpose_pitch[1]) row.append(seg_pitch_min) seg_pitch_stddev = get_stddev(transpose_pitch[1]) row.append(seg_pitch_stddev) seg_pitch_count = get_count(transpose_pitch[1]) row.append(seg_pitch_count) seg_pitch_sum = get_sum(transpose_pitch[1]) row.append(seg_pitch_sum) row.append(transpose_pitch[2][i]) seg_pitch_avg = get_avg(transpose_pitch[2]) row.append(seg_pitch_avg) seg_pitch_max = get_max(transpose_pitch[2]) row.append(seg_pitch_max) seg_pitch_min = get_min(transpose_pitch[2]) row.append(seg_pitch_min) seg_pitch_stddev = get_stddev(transpose_pitch[2]) row.append(seg_pitch_stddev) seg_pitch_count = get_count(transpose_pitch[2]) row.append(seg_pitch_count) seg_pitch_sum = get_sum(transpose_pitch[2]) row.append(seg_pitch_sum) row.append(transpose_pitch[3][i]) seg_pitch_avg = get_avg(transpose_pitch[3]) row.append(seg_pitch_avg) seg_pitch_max = get_max(transpose_pitch[3]) row.append(seg_pitch_max) seg_pitch_min = get_min(transpose_pitch[3]) row.append(seg_pitch_min) seg_pitch_stddev = get_stddev(transpose_pitch[3]) row.append(seg_pitch_stddev) seg_pitch_count = get_count(transpose_pitch[3]) row.append(seg_pitch_count) seg_pitch_sum = get_sum(transpose_pitch[3]) row.append(seg_pitch_sum) row.append(transpose_pitch[4][i]) seg_pitch_avg = get_avg(transpose_pitch[4]) row.append(seg_pitch_avg) seg_pitch_max = get_max(transpose_pitch[4]) row.append(seg_pitch_max) seg_pitch_min = get_min(transpose_pitch[4]) row.append(seg_pitch_min) seg_pitch_stddev = get_stddev(transpose_pitch[4]) row.append(seg_pitch_stddev) seg_pitch_count = get_count(transpose_pitch[4]) row.append(seg_pitch_count) seg_pitch_sum = get_sum(transpose_pitch[4]) row.append(seg_pitch_sum) row.append(transpose_pitch[5][i]) seg_pitch_avg = get_avg(transpose_pitch[5]) row.append(seg_pitch_avg) seg_pitch_max = get_max(transpose_pitch[5]) row.append(seg_pitch_max) seg_pitch_min = get_min(transpose_pitch[5]) row.append(seg_pitch_min) seg_pitch_stddev = get_stddev(transpose_pitch[5]) row.append(seg_pitch_stddev) seg_pitch_count = get_count(transpose_pitch[5]) row.append(seg_pitch_count) seg_pitch_sum = get_sum(transpose_pitch[5]) row.append(seg_pitch_sum) row.append(transpose_pitch[6][i]) seg_pitch_avg = get_avg(transpose_pitch[6]) row.append(seg_pitch_avg) seg_pitch_max = get_max(transpose_pitch[6]) row.append(seg_pitch_max) seg_pitch_min = get_min(transpose_pitch[6]) row.append(seg_pitch_min) seg_pitch_stddev = get_stddev(transpose_pitch[6]) row.append(seg_pitch_stddev) seg_pitch_count = get_count(transpose_pitch[6]) row.append(seg_pitch_count) seg_pitch_sum = get_sum(transpose_pitch[6]) row.append(seg_pitch_sum) row.append(transpose_pitch[7][i]) seg_pitch_avg = get_avg(transpose_pitch[7]) row.append(seg_pitch_avg) seg_pitch_max = get_max(transpose_pitch[7]) row.append(seg_pitch_max) seg_pitch_min = get_min(transpose_pitch[7]) row.append(seg_pitch_min) seg_pitch_stddev = get_stddev(transpose_pitch[7]) row.append(seg_pitch_stddev) seg_pitch_count = get_count(transpose_pitch[7]) row.append(seg_pitch_count) seg_pitch_sum = get_sum(transpose_pitch[7]) row.append(seg_pitch_sum) row.append(transpose_pitch[8][i]) seg_pitch_avg = get_avg(transpose_pitch[8]) row.append(seg_pitch_avg) seg_pitch_max = get_max(transpose_pitch[8]) row.append(seg_pitch_max) seg_pitch_min = get_min(transpose_pitch[8]) row.append(seg_pitch_min) seg_pitch_stddev = get_stddev(transpose_pitch[8]) row.append(seg_pitch_stddev) seg_pitch_count = get_count(transpose_pitch[8]) row.append(seg_pitch_count) seg_pitch_sum = get_sum(transpose_pitch[8]) row.append(seg_pitch_sum) row.append(transpose_pitch[9][i]) seg_pitch_avg = get_avg(transpose_pitch[9]) row.append(seg_pitch_avg) seg_pitch_max = get_max(transpose_pitch[9]) row.append(seg_pitch_max) seg_pitch_min = get_min(transpose_pitch[9]) row.append(seg_pitch_min) seg_pitch_stddev = get_stddev(transpose_pitch[9]) row.append(seg_pitch_stddev) seg_pitch_count = get_count(transpose_pitch[9]) row.append(seg_pitch_count) seg_pitch_sum = get_sum(transpose_pitch[9]) row.append(seg_pitch_sum) row.append(transpose_pitch[10][i]) seg_pitch_avg = get_avg(transpose_pitch[10]) row.append(seg_pitch_avg) seg_pitch_max = get_max(transpose_pitch[10]) row.append(seg_pitch_max) seg_pitch_min = get_min(transpose_pitch[10]) row.append(seg_pitch_min) seg_pitch_stddev = get_stddev(transpose_pitch[10]) row.append(seg_pitch_stddev) seg_pitch_count = get_count(transpose_pitch[10]) row.append(seg_pitch_count) seg_pitch_sum = get_sum(transpose_pitch[10]) row.append(seg_pitch_sum) row.append(transpose_pitch[11][i]) seg_pitch_avg = get_avg(transpose_pitch[11]) row.append(seg_pitch_avg) seg_pitch_max = get_max(transpose_pitch[11]) row.append(seg_pitch_max) seg_pitch_min = get_min(transpose_pitch[11]) row.append(seg_pitch_min) seg_pitch_stddev = get_stddev(transpose_pitch[11]) row.append(seg_pitch_stddev) seg_pitch_count = get_count(transpose_pitch[11]) row.append(seg_pitch_count) seg_pitch_sum = get_sum(transpose_pitch[11]) row.append(seg_pitch_sum) #timbre arrays seg_timbre = hdf5_getters.get_segments_timbre(h5) transpose_timbre = seg_pitch.transpose( ) #tranposing matrix, to have 12 rows row.append(transpose_timbre[0][i]) seg_timbre_avg = get_avg(transpose_timbre[0]) row.append(seg_timbre_avg) seg_timbre_max = get_max(transpose_timbre[0]) row.append(seg_timbre_max) seg_timbre_min = get_min(transpose_timbre[0]) row.append(seg_timbre_min) seg_timbre_stddev = get_stddev(transpose_timbre[0]) row.append(seg_timbre_stddev) seg_timbre_count = get_count(transpose_timbre[0]) row.append(seg_timbre_count) seg_timbre_sum = get_sum(transpose_timbre[0]) row.append(seg_timbre_sum) row.append(transpose_timbre[1][i]) seg_timbre_avg = get_avg(transpose_timbre[1]) row.append(seg_timbre_avg) seg_timbre_max = get_max(transpose_timbre[1]) row.append(seg_timbre_max) seg_timbre_min = get_min(transpose_timbre[1]) row.append(seg_timbre_min) seg_timbre_stddev = get_stddev(transpose_timbre[1]) row.append(seg_timbre_stddev) seg_timbre_count = get_count(transpose_timbre[1]) row.append(seg_timbre_count) seg_timbre_sum = get_sum(transpose_timbre[1]) row.append(seg_timbre_sum) row.append(transpose_timbre[2][i]) seg_timbre_avg = get_avg(transpose_timbre[2]) row.append(seg_timbre_avg) seg_timbre_max = get_max(transpose_timbre[2]) row.append(seg_timbre_max) seg_timbre_min = get_min(transpose_timbre[2]) row.append(seg_timbre_min) seg_timbre_stddev = get_stddev(transpose_timbre[2]) row.append(seg_timbre_stddev) seg_timbre_count = get_count(transpose_timbre[2]) row.append(seg_timbre_count) seg_timbre_sum = get_sum(transpose_timbre[2]) row.append(seg_timbre_sum) row.append(transpose_timbre[3][i]) seg_timbre_avg = get_avg(transpose_timbre[3]) row.append(seg_timbre_avg) seg_timbre_max = get_max(transpose_timbre[3]) row.append(seg_timbre_max) seg_timbre_min = get_min(transpose_timbre[3]) row.append(seg_timbre_min) seg_timbre_stddev = get_stddev(transpose_timbre[3]) row.append(seg_timbre_stddev) seg_timbre_count = get_count(transpose_timbre[3]) row.append(seg_timbre_count) seg_timbre_sum = get_sum(transpose_timbre[3]) row.append(seg_timbre_sum) row.append(transpose_timbre[4][i]) seg_timbre_avg = get_avg(transpose_timbre[4]) row.append(seg_timbre_avg) seg_timbre_max = get_max(transpose_timbre[4]) row.append(seg_timbre_max) seg_timbre_min = get_min(transpose_timbre[4]) row.append(seg_timbre_min) seg_timbre_stddev = get_stddev(transpose_timbre[4]) row.append(seg_timbre_stddev) seg_timbre_count = get_count(transpose_timbre[4]) row.append(seg_timbre_count) seg_timbre_sum = get_sum(transpose_timbre[4]) row.append(seg_timbre_sum) row.append(transpose_timbre[5][i]) seg_timbre_avg = get_avg(transpose_timbre[5]) row.append(seg_timbre_avg) seg_timbre_max = get_max(transpose_timbre[5]) row.append(seg_timbre_max) seg_timbre_min = get_min(transpose_timbre[5]) row.append(seg_timbre_min) seg_timbre_stddev = get_stddev(transpose_timbre[5]) row.append(seg_timbre_stddev) seg_timbre_count = get_count(transpose_timbre[5]) row.append(seg_timbre_count) seg_timbre_sum = get_sum(transpose_timbre[5]) row.append(seg_timbre_sum) row.append(transpose_timbre[6][i]) seg_timbre_avg = get_avg(transpose_timbre[6]) row.append(seg_timbre_avg) seg_timbre_max = get_max(transpose_timbre[6]) row.append(seg_timbre_max) seg_timbre_min = get_min(transpose_timbre[6]) row.append(seg_timbre_min) seg_timbre_stddev = get_stddev(transpose_timbre[6]) row.append(seg_timbre_stddev) seg_timbre_count = get_count(transpose_timbre[6]) row.append(seg_timbre_count) seg_timbre_sum = get_sum(transpose_timbre[6]) row.append(seg_timbre_sum) row.append(transpose_timbre[7][i]) seg_timbre_avg = get_avg(transpose_timbre[7]) row.append(seg_timbre_avg) seg_timbre_max = get_max(transpose_timbre[7]) row.append(seg_timbre_max) seg_timbre_min = get_min(transpose_timbre[7]) row.append(seg_timbre_min) seg_timbre_stddev = get_stddev(transpose_timbre[7]) row.append(seg_timbre_stddev) seg_timbre_count = get_count(transpose_timbre[7]) row.append(seg_timbre_count) seg_timbre_sum = get_sum(transpose_timbre[7]) row.append(seg_timbre_sum) row.append(transpose_timbre[8][i]) seg_timbre_avg = get_avg(transpose_timbre[8]) row.append(seg_timbre_avg) seg_timbre_max = get_max(transpose_timbre[8]) row.append(seg_timbre_max) seg_timbre_min = get_min(transpose_timbre[8]) row.append(seg_timbre_min) seg_timbre_stddev = get_stddev(transpose_timbre[8]) row.append(seg_timbre_stddev) seg_timbre_count = get_count(transpose_timbre[8]) row.append(seg_timbre_count) seg_timbre_sum = get_sum(transpose_timbre[8]) row.append(seg_timbre_sum) row.append(transpose_timbre[9][i]) seg_timbre_avg = get_avg(transpose_timbre[9]) row.append(seg_timbre_avg) seg_timbre_max = get_max(transpose_timbre[9]) row.append(seg_timbre_max) seg_timbre_min = get_min(transpose_timbre[9]) row.append(seg_timbre_min) seg_timbre_stddev = get_stddev(transpose_timbre[9]) row.append(seg_timbre_stddev) seg_timbre_count = get_count(transpose_timbre[9]) row.append(seg_timbre_count) seg_timbre_sum = get_sum(transpose_timbre[9]) row.append(seg_timbre_sum) row.append(transpose_timbre[10][i]) seg_timbre_avg = get_avg(transpose_timbre[10]) row.append(seg_timbre_avg) seg_timbre_max = get_max(transpose_timbre[10]) row.append(seg_timbre_max) seg_timbre_min = get_min(transpose_timbre[10]) row.append(seg_timbre_min) seg_timbre_stddev = get_stddev(transpose_timbre[10]) row.append(seg_timbre_stddev) seg_timbre_count = get_count(transpose_timbre[10]) row.append(seg_timbre_count) seg_timbre_sum = get_sum(transpose_timbre[10]) row.append(seg_timbre_sum) row.append(transpose_timbre[11][i]) seg_timbre_avg = get_avg(transpose_timbre[11]) row.append(seg_timbre_avg) seg_timbre_max = get_max(transpose_timbre[11]) row.append(seg_timbre_max) seg_timbre_min = get_min(transpose_timbre[11]) row.append(seg_timbre_min) seg_timbre_stddev = get_stddev(transpose_timbre[11]) row.append(seg_timbre_stddev) seg_timbre_count = get_count(transpose_timbre[11]) row.append(seg_timbre_count) seg_timbre_sum = get_sum(transpose_timbre[11]) row.append(seg_timbre_sum) for item in row_seg2_padding: row.append(item) writer.writerow(row) row = [] row = gral_info[:] # "--------tatums---------------" tatms_c = hdf5_getters.get_tatums_confidence(h5) group_index = 5 row_front = padding(245) #blank spaces left in front of tatums row = [] row = gral_info[:] for i, item in enumerate(tatms_c): row.append(group_index) row.append(i) for item in row_front: #appending blank spaces at the front of the row row.append(item) row.append(tatms_c[i]) tatms_c_avg = get_avg(tatms_c) row.append(tatms_c_avg) tatms_c_max = get_max(tatms_c) row.append(tatms_c_max) tatms_c_min = get_min(tatms_c) row.append(tatms_c_min) tatms_c_stddev = get_stddev(tatms_c) row.append(tatms_c_stddev) tatms_c_count = get_count(tatms_c) row.append(tatms_c_count) tatms_c_sum = get_sum(tatms_c) row.append(tatms_c_sum) tatms_start = hdf5_getters.get_tatums_start(h5) row.append(tatms_start[i]) tatms_start_avg = get_avg(tatms_start) row.append(tatms_start_avg) tatms_start_max = get_max(tatms_start) row.append(tatms_start_max) tatms_start_min = get_min(tatms_start) row.append(tatms_start_min) tatms_start_stddev = get_stddev(tatms_start) row.append(tatms_start_stddev) tatms_start_count = get_count(tatms_start) row.append(tatms_start_count) tatms_start_sum = get_sum(tatms_start) row.append(tatms_start_sum) writer.writerow(row) row = [] row = gral_info[:] transpose_pitch = seg_pitch.transpose( ) #this is to tranpose the matrix,so we can have 12 rows #arrays containing the aggregate values of the 12 rows seg_pitch_avg = [] seg_pitch_max = [] seg_pitch_min = [] seg_pitch_stddev = [] seg_pitch_count = [] seg_pitch_sum = [] i = 0 #Getting the aggregate values in the pitches array for row in transpose_pitch: seg_pitch_avg.append(get_avg(row)) seg_pitch_max.append(get_max(row)) seg_pitch_min.append(get_min(row)) seg_pitch_stddev.append(get_stddev(row)) seg_pitch_count.append(get_count(row)) seg_pitch_sum.append(get_sum(row)) i = i + 1 #extracting information from the timbre array transpose_timbre = seg_pitch.transpose( ) #tranposing matrix, to have 12 rows #arrays containing the aggregate values of the 12 rows seg_timbre_avg = [] seg_timbre_max = [] seg_timbre_min = [] seg_timbre_stddev = [] seg_timbre_count = [] seg_timbre_sum = [] i = 0 for row in transpose_timbre: seg_timbre_avg.append(get_avg(row)) seg_timbre_max.append(get_max(row)) seg_timbre_min.append(get_min(row)) seg_timbre_stddev.append(get_stddev(row)) seg_timbre_count.append(get_count(row)) seg_timbre_sum.append(get_sum(row)) i = i + 1 h5.close() count = count + 1 print count
counter = 0 for subdir, dirs, files in os.walk("data/"): for file in files: f = os.path.join(subdir, file) if ".h5" in f: h5 = h.open_h5_file_read(f) print("----------") ''' Store artist tuples ''' artist_id = h.get_artist_id(h5, 0) artist_name = h.get_artist_name(h5, 0) artist_name = artist_name.replace("'", "") artist_hottness = str(h.get_artist_hotttnesss(h5, 0)) print artist_hottness if artist_hottness == "nan": artist_hottness = "0.0" artist_familiarity = str(h.get_artist_familiarity(h5, 0)) if artist_familiarity == "nan": artist_familiarity = "0.0" cursor.execute("SELECT * FROM artist WHERE artist_id = '" + artist_id + "'") rs = cursor.fetchall() if cursor.rowcount != 1: cursor.execute("INSERT INTO artist VALUES ('" + artist_id + "','" + artist_name + "'," + artist_hottness + "," + artist_familiarity + ");") ''' Store artist_genres tuples ''' terms = h.get_artist_terms(h5, 0) mbtags = h.get_artist_mbtags(h5, 0) for term in terms: term = term.replace("'", "")
def get_all_rows(basedir, ext='.h5'): rows = [] for root, dirs, files in os.walk(basedir): files = glob.glob(os.path.join(root, '*' + ext)) for f in files: # print(os.path.join(root, f)) h5 = hdf5_getters.open_h5_file_read(f) num_songs = hdf5_getters.get_num_songs(h5) # print(num_songs) for i in range(num_songs): print(i) obj = {} obj['artist_name'] = hdf5_getters.get_artist_name( h5, i).decode('UTF-8') obj['artist_familiarity'] = hdf5_getters.get_artist_familiarity( h5, i) obj['artist_hotness'] = hdf5_getters.get_artist_hotttnesss( h5, i) obj['artist_id'] = hdf5_getters.get_artist_id( h5, i).decode('UTF-8') # obj['artist_mbid']=hdf5_getters.get_artist_mbid(h5,i).decode('UTF-8') obj['artist_playmeid'] = hdf5_getters.get_artist_playmeid( h5, i) obj['artist_7digitalid'] = hdf5_getters.get_artist_7digitalid( h5, i) # obj['artist_latitude']=hdf5_getters.get_artist_latitude(h5,i) # obj['artist_longitude']=hdf5_getters.get_artist_longitude(h5,i) # obj['artist_location']=hdf5_getters.get_artist_location(h5,i).decode('UTF-8') obj['artist_name'] = hdf5_getters.get_artist_name( h5, i).decode('UTF-8') obj['release'] = hdf5_getters.get_release(h5, i).decode('UTF-8') obj['song_hotttnesss'] = hdf5_getters.get_song_hotttnesss( h5, i) obj['title'] = hdf5_getters.get_title(h5, i).decode('UTF-8') # obj['artist_terms']=hdf5_getters.get_artist_terms(h5) # obj['artist_terms_freq']=hdf5_getters.get_artist_terms_freq(h5) # obj['artist_terms_weight']=hdf5_getters.get_artist_terms_weight(h5) # obj['audio_md5']=hdf5_getters.get_audio_md5(h5).decode('UTF-8') obj['danceability'] = hdf5_getters.get_danceability(h5, i) obj['duration'] = hdf5_getters.get_duration(h5, i) obj['end_of_fade_in'] = hdf5_getters.get_end_of_fade_in(h5, i) obj['energy'] = hdf5_getters.get_energy(h5, i) obj['key'] = hdf5_getters.get_key(h5, i) obj['key_confidence'] = hdf5_getters.get_key_confidence(h5, i) obj['loudness'] = hdf5_getters.get_loudness(h5, i) obj['mode'] = hdf5_getters.get_mode(h5, i) # obj['start_of_fade_out']=hdf5_getters.get_start_of_fade_out(h5) obj['tempo'] = hdf5_getters.get_tempo(h5, i) obj['time_signature'] = hdf5_getters.get_time_signature(h5, i) # obj['time_signature_confidence']=hdf5_getters.get_time_signature_confidence(h5) obj['track_id'] = hdf5_getters.get_track_id(h5, i).decode('UTF-8') # obj['segments_start']=hdf5_getters.get_segments_start(h5) # obj['segments_confidence']=hdf5_getters.get_segments_confidence(h5) # obj['segments_pitches']=hdf5_getters.get_segments_pitches(h5) # obj['segments_timbre']=hdf5_getters.get_segments_timbre(h5) # obj['segments_loudness_max']=hdf5_getters.get_segments_loudness_max(h5) # obj['segments_loudness_max_time']=hdf5_getters.get_segments_loudness_max_time(h5) # obj['segments_confidence']=hdf5_getters.get_segments_confidence(h5) # obj['segments_loudness_start']=hdf5_getters.get_segments_loudness_start(h5) # obj['sections_start']=hdf5_getters.get_sections_start(h5) # obj['sections_confidence']=hdf5_getters.get_sections_confidence(h5) # obj['beats_start']=hdf5_getters.get_beats_start(h5) # obj['beats_confidence']=hdf5_getters.get_beats_confidence(h5) # obj['bars_start']=hdf5_getters.get_bars_start(h5) # obj['bars_confidence']=hdf5_getters.get_bars_confidence(h5) # obj['tatums_start']=hdf5_getters.get_tatums_start(h5) # obj['artist_mbtags']=hdf5_getters.get_artist_mbtags(h5) # obj['artist_mbtags_count']=hdf5_getters.get_artist_mbtags_count(h5) obj['year'] = hdf5_getters.get_year(h5, i) rows.append(obj) h5.close() return rows
def func_to_extract_features(filename): """ This function does 3 simple things: - open the song file - get artist ID and put it - close the file """ global cntnan global listfeatures cf = [] h5 = GETTERS.open_h5_file_read(filename) nanfound = 0 #Get target feature: song hotness #FEATURE 0 song_hotness = GETTERS.get_song_hotttnesss(h5) if math.isnan(song_hotness): nanfound = 1 cntnan = cntnan + 1 h5.close() return 0 elif song_hotness > 0.3 and song_hotness < 0.6: h5.close() return 0 else: if song_hotness <= 0.3: hotness_class = 0 elif song_hotness >= 0.6: hotness_class = 1 cf.append(hotness_class) #FEATURE 1 #Get song loudness song_loudness = GETTERS.get_loudness(h5) if math.isnan(song_loudness): nanfound = 1 cntnan = cntnan + 1 else: #cf.append(song_loudness) pass #FEATURE 2 #Get key of the song song_key = GETTERS.get_key(h5) if math.isnan(song_key): nanfound = 1 cntnan = cntnan + 1 else: # cf.append(song_key) pass #FEATURE 3 song_duration = GETTERS.get_duration(h5) if math.isnan(song_duration): nanfound = 1 cntnan = cntnan + 1 else: # cf.append(song_duration) pass #Feature 4 #Get song tempo song_tempo = GETTERS.get_tempo(h5) if math.isnan(song_tempo): nanfound = 1 cntnan = cntnan + 1 else: # cf.append(song_tempo) pass #Feature 5: artist familarity artist_familiarity = GETTERS.get_artist_familiarity(h5) if math.isnan(artist_familiarity): nanfound = 1 cntnan = cntnan + 1 else: # cf.append(artist_familiarity) pass #Feature 6: artist_hotness artist_hotness = GETTERS.get_artist_hotttnesss(h5) if math.isnan(artist_hotness): nanfound = 1 cntnan = cntnan + 1 else: # cf.append(artist_hotness) pass #Feature 7 time signature time_signature = GETTERS.get_time_signature(h5) # cf.append(time_signature) #Feature 8 #Loudness COV loudness_segments = np.array(GETTERS.get_segments_loudness_max(h5)) loudness_cov = abs(variation(loudness_segments)) if math.isnan(loudness_cov): nanfound = 1 cntnan = cntnan + 1 else: # cf.append(loudness_cov) pass #Feature 9 #Beat COV beat_segments = np.array(GETTERS.get_beats_start(h5)) beat_cov = abs(variation(beat_segments)) if math.isnan(beat_cov): nanfound = 1 cntnan = cntnan + 1 else: # cf.append(beat_cov) pass #Feature 10 #Year song_year = GETTERS.get_year(h5) if song_year == 0: nanfound = 1 cntnan = cntnan + 1 else: # cf.append(song_year) pass title = GETTERS.get_title(h5) if title in energydict: audio_summary = energydict[title] energy = audio_summary['energy'] danceability = audio_summary['danceability'] speechiness = audio_summary['speechiness'] liveness = audio_summary['liveness'] else: stitle = re.sub(r'\([^)]*\)','', title) if stitle in energydict: audio_summary = energydict[stitle] energy = audio_summary['energy'] danceability = audio_summary['danceability'] speechiness = audio_summary['speechiness'] liveness = audio_summary['liveness'] else: energy = 0.0 danceability = 0.0 speechiness = 0.0 liveness = 0.0 # Feature 11 cf.append(energy) # Feature 12 # cf.append(danceability) # Feature 13 # cf.append(speechiness) # Feature 14 # cf.append(liveness) if nanfound == 0: strlist = list_to_csv(cf) listfeatures.append(strlist) h5.close()
song.artistName = remove_trap_characters( str(hdf5_getters.get_artist_name(songH5File))) song.artistID = remove_trap_characters( str(hdf5_getters.get_artist_id(songH5File))) song.albumID = remove_trap_characters( str(hdf5_getters.get_release_7digitalid(songH5File))) song.artistLatitude = remove_trap_characters( str(hdf5_getters.get_artist_latitude(songH5File))) # Replace the comma in the location (if there is one), since this will displace the entire row song.artistLocation = remove_trap_characters( str(hdf5_getters.get_artist_location(songH5File))).replace( ',', ':') song.artistLongitude = remove_trap_characters( str(hdf5_getters.get_artist_longitude(songH5File))) song.artistFamiliarity = remove_trap_characters( str(hdf5_getters.get_artist_familiarity(songH5File))) song.artistHotttnesss = remove_trap_characters( str(hdf5_getters.get_artist_hotttnesss(songH5File))) song.artistmbid = remove_trap_characters( str(hdf5_getters.get_artist_mbid(songH5File))) song.artistPlaymeid = remove_trap_characters( str(hdf5_getters.get_artist_playmeid(songH5File))) song.artist7digitalid = remove_trap_characters( str(hdf5_getters.get_artist_7digitalid(songH5File))) temp = hdf5_getters.get_artist_terms(songH5File) song.artistTerms = remove_trap_characters(str(list(temp))) song.artistTermsCount = get_list_length(temp) song.artistTermsFreq = remove_trap_characters( str(list(hdf5_getters.get_artist_terms_freq(songH5File)))) song.artistTermsWeight = remove_trap_characters(
def main(): outputFile1 = open('SongCSVFinal.csv', 'w') csvRowString = "" ################################################# #if you want to prompt the user for the order of attributes in the csv, #leave the prompt boolean set to True #else, set 'prompt' to False and set the order of attributes in the 'else' #clause prompt = False ################################################# if prompt == True: while prompt: prompt = False csvAttributeString = raw_input( "\n\nIn what order would you like the colums of the CSV file?\n" + "Please delineate with commas. The options are: " + "AlbumName, AlbumID, ArtistID, ArtistLatitude, ArtistLocation, ArtistLongitude," + " ArtistName, Danceability, Duration, KeySignature, KeySignatureConfidence, Tempo," + " SongID, TimeSignature, TimeSignatureConfidence, Title, and Year.\n\n" + "For example, you may write \"Title, Tempo, Duration\"...\n\n" + "...or exit by typing 'exit'.\n\n") csvAttributeList = re.split('\W+', csvAttributeString) for i, v in enumerate(csvAttributeList): csvAttributeList[i] = csvAttributeList[i].lower() for attribute in csvAttributeList: # print "Here is the attribute: " + attribute + " \n" if attribute == 'AlbumID'.lower(): csvRowString += 'AlbumID' elif attribute == 'AlbumName'.lower(): csvRowString += 'AlbumName' elif attribute == 'ArtistID'.lower(): csvRowString += 'ArtistID' elif attribute == 'ArtistLatitude'.lower(): csvRowString += 'ArtistLatitude' elif attribute == 'ArtistLocation'.lower(): csvRowString += 'ArtistLocation' elif attribute == 'ArtistLongitude'.lower(): csvRowString += 'ArtistLongitude' elif attribute == 'ArtistName'.lower(): csvRowString += 'ArtistName' elif attribute == 'Danceability'.lower(): csvRowString += 'Danceability' elif attribute == 'Duration'.lower(): csvRowString += 'Duration' elif attribute == 'KeySignature'.lower(): csvRowString += 'KeySignature' elif attribute == 'KeySignatureConfidence'.lower(): csvRowString += 'KeySignatureConfidence' elif attribute == 'SongID'.lower(): csvRowString += "SongID" elif attribute == 'Tempo'.lower(): csvRowString += 'Tempo' elif attribute == 'TimeSignature'.lower(): csvRowString += 'TimeSignature' elif attribute == 'TimeSignatureConfidence'.lower(): csvRowString += 'TimeSignatureConfidence' elif attribute == 'Title'.lower(): csvRowString += 'Title' elif attribute == 'Year'.lower(): csvRowString += 'Year' elif attribute == 'Exit'.lower(): sys.exit() else: prompt = True print "==============" print "I believe there has been an error with the input." print "==============" break csvRowString += "," lastIndex = len(csvRowString) csvRowString = csvRowString[0:lastIndex - 1] csvRowString += "\n" outputFile1.write(csvRowString) csvRowString = "" #else, if you want to hard code the order of the csv file and not prompt #the user, else: ################################################# #change the order of the csv file here #Default is to list all available attributes (in alphabetical order) csvRowString = ( "SongID,AlbumID,AlbumName,ArtistID,ArtistLatitude,ArtistLocation," + "ArtistLongitude,ArtistName,Danceability,Duration,KeySignature," + "KeySignatureConfidence,Tempo,TimeSignature,TimeSignatureConfidence," + "Title,Year,mbID,Energy,ArtistFamiliarity,Hotness,end_of_fade_in,key,keyConfidence,Loudness," + "mode,mode_confidence,start_of_fade_out") ################################################# csvAttributeList = re.split('\W+', csvRowString) for i, v in enumerate(csvAttributeList): csvAttributeList[i] = csvAttributeList[i].lower() outputFile1.write("SongNumber,") outputFile1.write(csvRowString + "\n") csvRowString = "" ################################################# #Set the basedir here, the root directory from which the search #for files stored in a (hierarchical data structure) will originate basedir = "." # "." As the default means the current directory ext = ".h5" #Set the extension here. H5 is the extension for HDF5 files. ################################################# #files = glob.glob(os.path.join(root,'*'+ext)) #FOR LOOP for root, dirs, files in os.walk(basedir): files = glob.glob(os.path.join(root, '*' + ext)) print(files) for f in files: songH5File = hdf5_getters.open_h5_file_read(f) print('hello 1') print(songH5File) song = Song(str(hdf5_getters.get_song_id(songH5File))) testDanceability = hdf5_getters.get_danceability(songH5File) # print type(testDanceability) # print ("Here is the danceability: ") + str(testDanceability) song.artistID = str(hdf5_getters.get_artist_id(songH5File)) song.albumID = str(hdf5_getters.get_release_7digitalid(songH5File)) song.albumName = str(hdf5_getters.get_release(songH5File)) song.artistLatitude = str( hdf5_getters.get_artist_latitude(songH5File)) song.artistLocation = str( hdf5_getters.get_artist_location(songH5File)) song.artistLongitude = str( hdf5_getters.get_artist_longitude(songH5File)) song.artistName = str(hdf5_getters.get_artist_name(songH5File)) song.danceability = str(hdf5_getters.get_danceability(songH5File)) song.duration = str(hdf5_getters.get_duration(songH5File)) # song.setGenreList() song.keySignature = str(hdf5_getters.get_key(songH5File)) song.keySignatureConfidence = str( hdf5_getters.get_key_confidence(songH5File)) # song.lyrics = None # song.popularity = None song.tempo = str(hdf5_getters.get_tempo(songH5File)) song.timeSignature = str( hdf5_getters.get_time_signature(songH5File)) song.timeSignatureConfidence = str( hdf5_getters.get_time_signature_confidence(songH5File)) song.title = str(hdf5_getters.get_title(songH5File)) song.year = str(hdf5_getters.get_year(songH5File)) song.mbID = str(hdf5_getters.get_artist_mbid(songH5File)) song.energy = str(hdf5_getters.get_energy(songH5File)) #song.beatConfidence = str(hdf5_getters.get_beats_confidence(songH5File)) song.tempo = str(hdf5_getters.get_tempo(songH5File)) song.loudness = str(hdf5_getters.get_loudness(songH5File)) song.key = str(hdf5_getters.get_key(songH5File)) song.artistFamiliarity = str( hdf5_getters.get_artist_familiarity(songH5File)) song.keyConfidence = str( hdf5_getters.get_key_confidence(songH5File)) song.hotness = str(hdf5_getters.get_artist_hotttnesss(songH5File)) #song.sampleRate= str(hdf5_getters.get_analysis_sample_rate(songH5File)) song.end_of_fade_in = str( hdf5_getters.get_end_of_fade_in(songH5File)) song.mode = str(hdf5_getters.get_mode(songH5File)) song.mode_confidence = str( hdf5_getters.get_mode_confidence(songH5File)) song.start_of_fade_out = str( hdf5_getters.get_start_of_fade_out(songH5File)) #print song count csvRowString += str(song.songCount) + "," for attribute in csvAttributeList: # print "Here is the attribute: " + attribute + " \n" if attribute == 'AlbumID'.lower(): csvRowString += song.albumID elif attribute == 'AlbumName'.lower(): albumName = song.albumName albumName = albumName.replace(',', "") csvRowString += "\"" + albumName + "\"" elif attribute == 'ArtistID'.lower(): csvRowString += "\"" + song.artistID + "\"" elif attribute == 'ArtistLatitude'.lower(): latitude = song.artistLatitude if latitude == 'nan': latitude = '' csvRowString += latitude elif attribute == 'ArtistLocation'.lower(): location = song.artistLocation location = location.replace(',', '') csvRowString += "\"" + location + "\"" elif attribute == 'ArtistLongitude'.lower(): longitude = song.artistLongitude if longitude == 'nan': longitude = '' csvRowString += longitude elif attribute == 'ArtistName'.lower(): csvRowString += "\"" + song.artistName + "\"" elif attribute == 'Danceability'.lower(): csvRowString += song.danceability elif attribute == 'Duration'.lower(): csvRowString += song.duration elif attribute == 'KeySignature'.lower(): csvRowString += song.keySignature elif attribute == 'KeySignatureConfidence'.lower(): # print "key sig conf: " + song.timeSignatureConfidence csvRowString += song.keySignatureConfidence elif attribute == 'SongID'.lower(): csvRowString += "\"" + song.id + "\"" elif attribute == 'Tempo'.lower(): # print "Tempo: " + song.tempo csvRowString += song.tempo elif attribute == 'TimeSignature'.lower(): csvRowString += song.timeSignature elif attribute == 'TimeSignatureConfidence'.lower(): # print "time sig conf: " + song.timeSignatureConfidence csvRowString += song.timeSignatureConfidence elif attribute == 'Title'.lower(): csvRowString += "\"" + song.title + "\"" elif attribute == 'Year'.lower(): csvRowString += song.year elif attribute == 'mbID'.lower(): csvRowString += song.mbID elif attribute == 'Energy'.lower(): csvRowString += song.energy elif attribute == 'ArtistFamiliarity'.lower(): csvRowString += song.artistFamiliarity elif attribute == 'Hotness'.lower(): csvRowString += song.hotness #elif attribute == 'SampleRate'.lower(): #csvRowString += song.sampleRate elif attribute == 'end_of_fade_in'.lower(): csvRowString += song.end_of_fade_in elif attribute == 'key'.lower(): csvRowString += song.key elif attribute == 'keyConfidence'.lower(): csvRowString += song.keyConfidence elif attribute == 'Loudness'.lower(): csvRowString += song.loudness elif attribute == 'mode'.lower(): csvRowString += song.mode elif attribute == 'mode_confidence'.lower(): csvRowString += song.mode_confidence elif attribute == 'start_of_fade_out'.lower(): csvRowString += song.start_of_fade_out else: csvRowString += "Erm. This didn't work. Error. :( :(\n" csvRowString += "," #Remove the final comma from each row in the csv lastIndex = len(csvRowString) csvRowString = csvRowString[0:lastIndex - 1] csvRowString += "\n" outputFile1.write(csvRowString) csvRowString = "" songH5File.close() outputFile1.close()
def main(): dataset_dir = sys.argv[1] feat =[] feat1=[] feat2=[] feat3=[] feat4=[] print "Forming Dataset..." listing1 = os.listdir(dataset_dir) for a in listing1: listing2 = os.listdir(dataset_dir+a+'/') for b in listing2: listing3 = os.listdir(dataset_dir+a+'/'+b+'/') for c in listing3: listing4 = os.listdir(dataset_dir+a+'/'+b+'/'+c+'/') for d in listing4: h5 = hdf5_getters.open_h5_file_read(dataset_dir+a+'/'+b+'/'+c+'/'+d) feat =[] feat1=[] feat2=[] feat3=[] feat4=[] temp = hdf5_getters.get_artist_hotttnesss(h5) if (math.isnan(temp) or temp==0.0): h5.close() continue temp = hdf5_getters.get_artist_familiarity(h5) if (math.isnan(temp) or temp==0.0): h5.close() continue temp = hdf5_getters.get_end_of_fade_in(h5) if (math.isnan(temp)): h5.close() continue temp = hdf5_getters.get_key_confidence(h5) if (math.isnan(temp)): h5.close() continue temp = hdf5_getters.get_loudness(h5) if (math.isnan(temp)): h5.close() continue temp = hdf5_getters.get_mode_confidence(h5) if (math.isnan(temp)): h5.close() continue temp = hdf5_getters.get_sections_confidence(h5) if temp.size == 0: h5.close() continue temp = hdf5_getters.get_segments_confidence(h5) if temp.size == 0: h5.close() continue temp = hdf5_getters.get_segments_loudness_max(h5) if temp.size == 0: h5.close() continue temp = hdf5_getters.get_segments_loudness_max_time(h5) if temp.size == 0: h5.close() continue temp = hdf5_getters.get_segments_pitches(h5) if temp.size == 0: h5.close() continue temp = hdf5_getters.get_segments_timbre(h5) if temp.size == 0: h5.close() continue temp = hdf5_getters.get_start_of_fade_out(h5) if (math.isnan(temp)): h5.close() continue temp = hdf5_getters.get_tempo(h5) if (math.isnan(temp)): h5.close() continue temp = hdf5_getters.get_time_signature_confidence(h5) if (math.isnan(temp)): h5.close() continue temp = hdf5_getters.get_year(h5) if temp == 0: h5.close() continue temp = hdf5_getters.get_artist_terms(h5) if temp.size == 0: h5.close() continue temp_ = hdf5_getters.get_artist_terms_weight(h5) if temp_.size == 0: continue temp = hdf5_getters.get_bars_confidence(h5) sz = temp.size if sz<50: h5.close() continue temp = hdf5_getters.get_beats_confidence(h5) sz = temp.size if sz <50: h5.close() continue mm = np.mean(temp) vv = np.var(temp) if mm==0.0 and vv==0.0: h5.close() continue temp = hdf5_getters.get_segments_confidence(h5) sz = temp.size if sz <50: h5.close() continue temp = hdf5_getters.get_tatums_confidence(h5) sz = temp.size if sz <50: h5.close() continue temp = hdf5_getters.get_song_hotttnesss(h5) if (math.isnan(temp) or temp==0.0): h5.close() continue temp = hdf5_getters.get_bars_confidence(h5) sz = temp.size sz1 = sz/50 i=1 j=0 while i<=50: if i == 50: sz2 = sz else: sz2 = i*sz1 num=0.0 acc = 0 while j<sz2: acc += temp[j] j+=1 num+=1.0 mm = acc/num feat1.append(mm) i+=1 temp = hdf5_getters.get_beats_confidence(h5) sz = temp.size sz1 = sz/50 i=1 j=0 while i<=50: if i == 50: sz2 = sz else: sz2 = i*sz1 num=0.0 acc = 0 while j<sz2: acc += temp[j] j+=1 num+=1.0 mm = acc/num feat2.append(mm) i+=1 temp = hdf5_getters.get_segments_confidence(h5) sz = temp.size sz1 = sz/50 i=1 j=0 while i<=50: if i == 50: sz2 = sz else: sz2 = i*sz1 num=0.0 acc = 0 while j<sz2: acc += temp[j] j+=1 num+=1.0 mm = acc/num feat3.append(mm) i+=1 temp = hdf5_getters.get_tatums_confidence(h5) sz = temp.size sz1 = sz/50 i=1 j=0 while i<=50: if i == 50: sz2 = sz else: sz2 = i*sz1 num=0.0 acc = 0 while j<sz2: acc += temp[j] j+=1 num+=1.0 mm = acc/num feat4.append(mm) i+=1 i=0 avg = 0.0 while i<50: avg = (feat1[i] + feat2[i] + feat3[i] + feat4[i])/4.0 feat.append(avg) i++ temp = hdf5_getters.get_song_hotttnesss(h5) hott = 0 if temp >=0.75: hott = 1 elif temp >=0.40 and temp <0.75: hott = 2 else: hott = 3 feat.append(hott) h5.close() count = 1 f=open('MSD_DATASET_LSTM.txt', 'a') outstring='' cnt = 0 feat_size = len(feat) for i in feat: cnt+=1 outstring+=str(i) if (cnt!=feat_size): outstring+=',' outstring+='\n' f.write(outstring) f.close()
def main(): outputFile1 = open('SongCSV.csv', 'w') csvRowString = "" ################################################# #if you want to prompt the user for the order of attributes in the csv, #leave the prompt boolean set to True #else, set 'prompt' to False and set the order of attributes in the 'else' #clause prompt = False ################################################# if prompt == True: while prompt: prompt = False csvAttributeString = raw_input( "\n\nIn what order would you like the colums of the CSV file?\n" + "Please delineate with commas. The options are: " + "AlbumName, AlbumID, ArtistID, ArtistLatitude, ArtistLocation, ArtistLongitude," + " ArtistName, Danceability, Duration, KeySignature, KeySignatureConfidence, Tempo," + " SongID, TimeSignature, TimeSignatureConfidence, Title, and Year.\n\n" + "For example, you may write \"Title, Tempo, Duration\"...\n\n" + "...or exit by typing 'exit'.\n\n") csvAttributeList = re.split('\W+', csvAttributeString) for i, v in enumerate(csvAttributeList): csvAttributeList[i] = csvAttributeList[i].lower() for attribute in csvAttributeList: # print "Here is the attribute: " + attribute + " \n" if attribute == 'AlbumID'.lower(): csvRowString += 'AlbumID' elif attribute == 'AlbumName'.lower(): csvRowString += 'AlbumName' elif attribute == 'ArtistID'.lower(): csvRowString += 'ArtistID' elif attribute == 'ArtistLatitude'.lower(): csvRowString += 'ArtistLatitude' elif attribute == 'ArtistLocation'.lower(): csvRowString += 'ArtistLocation' elif attribute == 'ArtistLongitude'.lower(): csvRowString += 'ArtistLongitude' elif attribute == 'ArtistName'.lower(): csvRowString += 'ArtistName' elif attribute == 'Danceability'.lower(): csvRowString += 'Danceability' elif attribute == 'Duration'.lower(): csvRowString += 'Duration' elif attribute == 'KeySignature'.lower(): csvRowString += 'KeySignature' elif attribute == 'KeySignatureConfidence'.lower(): csvRowString += 'KeySignatureConfidence' elif attribute == 'SongID'.lower(): csvRowString += "SongID" elif attribute == 'Tempo'.lower(): csvRowString += 'Tempo' elif attribute == 'TimeSignature'.lower(): csvRowString += 'TimeSignature' elif attribute == 'TimeSignatureConfidence'.lower(): csvRowString += 'TimeSignatureConfidence' elif attribute == 'Title'.lower(): csvRowString += 'Title' elif attribute == 'Year'.lower(): csvRowString += 'Year' elif attribute == 'Familiarity'.lower(): ####Added by us! csvRowString += song.familiarity elif attribute == 'artist_mbid'.lower(): csvRowString += song.artist_mbid elif attribute == 'artist_playmeid'.lower(): csvRowString += song.artist_playmeid elif attribute == 'artist_7digid'.lower(): csvRowString += song.artist_7digid elif attribute == 'hottness'.lower(): csvRowString += song.hottness elif attribute == 'song_hottness'.lower(): csvRowString += song.song_hottness elif attribute == 'digitalid7'.lower(): csvRowString += song.digitalid7 elif attribute == 'similar_artists'.lower(): csvRowString += song.similar_artists elif attribute == 'artist_terms'.lower(): csvRowString += song.artist_terms elif attribute == 'art_terms_freq'.lower(): csvRowString += song.art_terms_freq elif attribute == 'art_terms_weight'.lower(): csvRowString += song.art_terms_weight elif attribute == 'a_sample_rate'.lower(): csvRowString += song.a_sample_rate elif attribute == 'audio_md5'.lower(): csvRowString += song.audio_md5 elif attribute == 'end_of_fade_in'.lower(): csvRowString += song.end_of_fade_in elif attribute == 'energy'.lower(): csvRowString += song.energy elif attribute == 'loudness'.lower(): csvRowString += song.loudness elif attribute == 'mode'.lower(): csvRowString += song.mode elif attribute == 'mode_conf'.lower(): csvRowString += song.mode_conf elif attribute == 'start_of_fade_out'.lower(): csvRowString += song.start_of_fade_out elif attribute == 'trackid'.lower(): csvRowString += song.trackid elif attribute == 'segm_start'.lower(): csvRowString += song.segm_start elif attribute == 'segm_conf'.lower(): csvRowString += song.segm_conf elif attribute == 'segm_pitch'.lower(): csvRowString += song.segm_pitch elif attribute == 'segm_timbre'.lower(): csvRowString += song.segm_timbre elif attribute == 'segm_max_loud'.lower(): csvRowString += song.segm_max_loud elif attribute == 'segm_max_loud_time'.lower(): csvRowString += song.segm_max_loud_time elif attribute == 'segm_loud_start'.lower(): csvRowString += song.segm_loud_start elif attribute == 'sect_start'.lower(): csvRowString += song.sect_start elif attribute == 'sect_conf'.lower(): csvRowString += song.sect_conf elif attribute == 'beats_start'.lower(): csvRowString += song.beats_start elif attribute == 'beats_conf'.lower(): csvRowString += song.beats_conf elif attribute == 'bars_start'.lower(): csvRowString += song.bars_start elif attribute == 'bars_conf'.lower(): csvRowString += song.bars_conf elif attribute == 'tatums_start'.lower(): csvRowString += song.tatums_start elif attribute == 'tatums_conf'.lower(): csvRowString += song.tatums_conf elif attribute == 'artist_mbtags'.lower(): csvRowString += song.artist_mbtags elif attribute == 'artist_mbtags_count'.lower(): csvRowString += song.artist_mbtags_count elif attribute == 'Exit'.lower(): sys.exit() else: prompt = True print("==============") print("I believe there has been an error with the input.") print("==============") break csvRowString += "," lastIndex = len(csvRowString) csvRowString = csvRowString[0:lastIndex - 1] csvRowString += "\n" outputFile1.write(csvRowString) csvRowString = "" #else, if you want to hard code the order of the csv file and not prompt #the user, else: ################################################# #change the order of the csv file here #Default is to list all available attributes (in alphabetical order) csvRowString = "SongID,AlbumID,AlbumName,ArtistID,ArtistLatitude,ArtistLocation,ArtistLongitude,ArtistName,Danceability,Duration,KeySignature,KeySignatureConfidence,Tempo,TimeSignature,TimeSignatureConfidence,Title,Year,Familiarity,Artist_Mbid,Artist_PlaymeId,Artist_7didId,Hottness,Song_Hottness,7digitalid,A_Sample_Rate,Audio_Md5,End_Of_Fade_In,Energy,Loudness,Mode,Mode_Conf,Start_Of_Fade_Out,TrackId" ################################################# csvAttributeList = re.split(',', csvRowString) for i, v in enumerate(csvAttributeList): csvAttributeList[i] = csvAttributeList[i].lower() csvRowString += "\n" outputFile1.write(csvRowString) csvRowString = "" ################################################# #Set the basedir here, the root directory from which the search #for files stored in a (hierarchical data structure) will originate basedir = "/home/bigdata/smalltest/" # "." As the default means the current directory ext = ".h5" #Set the extension here. H5 is the extension for HDF5 files. ################################################# #FOR LOOP for root, dirs, files in os.walk(basedir): files = glob.glob(os.path.join(root, '*' + ext)) for f in files: print(f) songH5File = hdf5_getters.open_h5_file_read(f) song = Song(str(hdf5_getters.get_song_id(songH5File))) # testDanceability = hdf5_getters.get_danceability(songH5File) # print type(testDanceability) # print ("Here is the danceability: ") + str(testDanceability) song.artistID = str(hdf5_getters.get_artist_id(songH5File)) song.albumID = str(hdf5_getters.get_release_7digitalid(songH5File)) song.albumName = str(hdf5_getters.get_release(songH5File)) song.artistLatitude = str( hdf5_getters.get_artist_latitude(songH5File)) song.artistLocation = str( hdf5_getters.get_artist_location(songH5File)) song.artistLongitude = str( hdf5_getters.get_artist_longitude(songH5File)) song.artistName = str(hdf5_getters.get_artist_name(songH5File)) song.danceability = str(hdf5_getters.get_danceability(songH5File)) song.duration = str(hdf5_getters.get_duration(songH5File)) # song.setGenreList() song.keySignature = str(hdf5_getters.get_key(songH5File)) song.keySignatureConfidence = str( hdf5_getters.get_key_confidence(songH5File)) # song.lyrics = None # song.popularity = None song.tempo = str(hdf5_getters.get_tempo(songH5File)) song.timeSignature = str( hdf5_getters.get_time_signature(songH5File)) song.timeSignatureConfidence = str( hdf5_getters.get_time_signature_confidence(songH5File)) song.title = str(hdf5_getters.get_title(songH5File)) song.year = str(hdf5_getters.get_year(songH5File)) #########Added by us! song.familiarity = str( hdf5_getters.get_artist_familiarity(songH5File)) song.artist_mbid = str(hdf5_getters.get_artist_mbid(songH5File)) song.artist_playmeid = str( hdf5_getters.get_artist_playmeid(songH5File)) song.artist_7digid = str( hdf5_getters.get_artist_7digitalid(songH5File)) song.hottness = str(hdf5_getters.get_artist_hotttnesss(songH5File)) song.song_hottness = str( hdf5_getters.get_song_hotttnesss(songH5File)) song.digitalid7 = str( hdf5_getters.get_track_7digitalid(songH5File)) #song.similar_artists = str(hdf5_getters.get_similar_artists(songH5File)) #song.artist_terms = str(hdf5_getters.get_artist_terms(songH5File)) #song.art_terms_freq = str(hdf5_getters.get_artist_terms_freq(songH5File)) #song.art_terms_weight = str(hdf5_getters.get_artist_terms_weight(songH5File)) song.a_sample_rate = str( hdf5_getters.get_analysis_sample_rate(songH5File)) song.audio_md5 = str(hdf5_getters.get_audio_md5(songH5File)) song.end_of_fade_in = str( hdf5_getters.get_end_of_fade_in(songH5File)) song.energy = str(hdf5_getters.get_energy(songH5File)) song.loudness = str(hdf5_getters.get_loudness(songH5File)) song.mode = str(hdf5_getters.get_mode(songH5File)) song.mode_conf = str(hdf5_getters.get_mode_confidence(songH5File)) song.start_of_fade_out = str( hdf5_getters.get_start_of_fade_out(songH5File)) song.trackid = str(hdf5_getters.get_track_id(songH5File)) #song.segm_start = str(hdf5_getters.get_segments_start(songH5File)) #song.segm_conf = str(hdf5_getters.get_segments_confidence(songH5File)) #song.segm_pitch = str(hdf5_getters.get_segments_pitches(songH5File)) #song.segm_timbre = str(hdf5_getters.get_segments_timbre(songH5File)) #song.segm_max_loud = str(hdf5_getters.get_segments_loudness_max(songH5File)) #song.segm_max_loud_time = str(hdf5_getters.get_segments_loudness_max_time(songH5File)) #song.segm_loud_start = str(hdf5_getters.get_segments_loudness_start(songH5File)) #song.sect_start = str(hdf5_getters.get_sections_start(songH5File)) #song.sect_conf = str(hdf5_getters.get_sections_confidence(songH5File)) #song.beats_start = str(hdf5_getters.get_beats_start(songH5File)) #song.beats_conf = str(hdf5_getters.get_beats_confidence(songH5File)) #song.bars_start = str(hdf5_getters.get_bars_start(songH5File)) #song.bars_conf = str(hdf5_getters.get_bars_confidence(songH5File)) #song.tatums_start = str(hdf5_getters.get_tatums_start(songH5File)) #song.tatums_conf = str(hdf5_getters.get_tatums_confidence(songH5File)) #song.artist_mbtags = str(hdf5_getters.get_artist_mbtags(songH5File)) #song.artist_mbtags_count = str(hdf5_getters.get_artist_mbtags_count(songH5File)) #print song count #csvRowString += str(song.songCount) + "," for attribute in csvAttributeList: # print "Here is the attribute: " + attribute + " \n" if attribute == 'AlbumID'.lower(): csvRowString += song.albumID elif attribute == 'AlbumName'.lower(): albumName = song.albumName albumName = albumName.replace("b\"", "") albumName = albumName.replace("\"", "") albumName = albumName.replace(',', "") csvRowString += "\"" + albumName + "\"" elif attribute == 'ArtistID'.lower(): csvRowString += "\"" + song.artistID + "\"" elif attribute == 'ArtistLatitude'.lower(): latitude = song.artistLatitude if latitude == 'nan': latitude = '' csvRowString += latitude elif attribute == 'ArtistLocation'.lower(): location = song.artistLocation location = location.replace(',', '') location = location.replace("b\"", "") location = location.replace("\"", "") csvRowString += "\"" + location + "\"" elif attribute == 'ArtistLongitude'.lower(): longitude = song.artistLongitude if longitude == 'nan': longitude = '' csvRowString += longitude elif attribute == 'ArtistName'.lower(): artistName = song.artistName artistName = artistName.replace("b\"", "") artistName = artistName.replace("\"", "") csvRowString += "\"" + artistName + "\"" elif attribute == 'Danceability'.lower(): csvRowString += song.danceability elif attribute == 'Duration'.lower(): csvRowString += song.duration elif attribute == 'KeySignature'.lower(): csvRowString += song.keySignature elif attribute == 'KeySignatureConfidence'.lower(): # print "key sig conf: " + song.timeSignatureConfidence csvRowString += song.keySignatureConfidence elif attribute == 'SongID'.lower(): csvRowString += "\"" + song.id + "\"" elif attribute == 'Tempo'.lower(): # print "Tempo: " + song.tempo csvRowString += song.tempo elif attribute == 'TimeSignature'.lower(): csvRowString += song.timeSignature elif attribute == 'TimeSignatureConfidence'.lower(): # print "time sig conf: " + song.timeSignatureConfidence csvRowString += song.timeSignatureConfidence elif attribute == 'Title'.lower(): t = song.title t = t.replace("b\"", "") t = t.replace("\"", "") csvRowString += "\"" + t + "\"" elif attribute == 'Year'.lower(): csvRowString += song.year elif attribute == 'Familiarity'.lower(): ####Added by us! csvRowString += song.familiarity elif attribute == 'artist_mbid'.lower(): csvRowString += "\"" + song.artist_mbid + "\"" elif attribute == 'artist_playmeid'.lower(): csvRowString += song.artist_playmeid elif attribute == 'artist_7digid'.lower(): csvRowString += song.artist_7digid elif attribute == 'hottness'.lower(): csvRowString += song.hottness elif attribute == 'song_hottness'.lower(): csvRowString += song.song_hottness elif attribute == 'digitalid7'.lower(): csvRowString += song.digitalid7 elif attribute == 'similar_artists'.lower(): csvRowString += song.similar_artists elif attribute == 'artist_terms'.lower(): csvRowString += song.artist_terms elif attribute == 'art_terms_freq'.lower(): csvRowString += song.art_terms_freq elif attribute == 'art_terms_weight'.lower(): csvRowString += song.art_terms_weight elif attribute == 'a_sample_rate'.lower(): csvRowString += song.a_sample_rate elif attribute == 'audio_md5'.lower(): csvRowString += "\"" + song.audio_md5 + "\"" elif attribute == 'end_of_fade_in'.lower(): csvRowString += song.end_of_fade_in elif attribute == 'energy'.lower(): csvRowString += song.energy elif attribute == 'loudness'.lower(): csvRowString += song.loudness elif attribute == 'mode'.lower(): csvRowString += song.mode elif attribute == 'mode_conf'.lower(): csvRowString += song.mode_conf elif attribute == 'start_of_fade_out'.lower(): csvRowString += song.start_of_fade_out elif attribute == 'trackid'.lower(): csvRowString += "\"" + song.trackid + "\"" elif attribute == 'segm_start'.lower(): csvRowString += song.segm_start elif attribute == 'segm_conf'.lower(): csvRowString += song.segm_conf elif attribute == 'segm_pitch'.lower(): csvRowString += song.segm_pitch elif attribute == 'segm_timbre'.lower(): csvRowString += song.segm_timbre elif attribute == 'segm_max_loud'.lower(): csvRowString += song.segm_max_loud elif attribute == 'segm_max_loud_time'.lower(): csvRowString += song.segm_max_loud_time elif attribute == 'segm_loud_start'.lower(): csvRowString += song.segm_loud_start elif attribute == 'sect_start'.lower(): csvRowString += song.sect_start elif attribute == 'sect_conf'.lower(): csvRowString += song.sect_conf elif attribute == 'beats_start'.lower(): csvRowString += song.beats_start elif attribute == 'beats_conf'.lower(): csvRowString += song.beats_conf elif attribute == 'bars_start'.lower(): csvRowString += song.bars_start elif attribute == 'bars_conf'.lower(): csvRowString += song.bars_conf elif attribute == 'tatums_start'.lower(): csvRowString += song.tatums_start elif attribute == 'tatums_conf'.lower(): csvRowString += song.tatums_conf elif attribute == 'artist_mbtags'.lower(): csvRowString += song.artist_mbtags elif attribute == 'artist_mbtags_count'.lower(): csvRowString += song.artist_mbtags_count else: csvRowString += "\"ERR\"" csvRowString += "," #Remove the final comma from each row in the csv lastIndex = len(csvRowString) csvRowString = csvRowString[0:lastIndex - 1] csvRowString += "\n" outputFile1.write(csvRowString) csvRowString = "" songH5File.close() outputFile1.close()
def func_to_extract_features(filename): """ This function does 3 simple things: - open the song file - get artist ID and put it - close the file """ global cntnan global listfeatures cf = [] h5 = GETTERS.open_h5_file_read(filename) nanfound = 0 # Get target feature: song hotness # FEATURE 0 song_hotness = GETTERS.get_song_hotttnesss(h5) if math.isnan(song_hotness): nanfound = 1 cntnan = cntnan + 1 h5.close() return 0 elif song_hotness > 0.3 and song_hotness < 0.6: h5.close() return 0 else: cf.append(song_hotness) # FEATURE 1 # Get song loudness song_loudness = GETTERS.get_loudness(h5) if math.isnan(song_loudness): nanfound = 1 cntnan = cntnan + 1 else: cf.append(song_loudness) # FEATURE 2 # Get key of the song song_key = GETTERS.get_key(h5) if math.isnan(song_key): nanfound = 1 cntnan = cntnan + 1 else: cf.append(song_key) # FEATURE 3 # Get duration of the song song_duration = GETTERS.get_duration(h5) if math.isnan(song_duration): nanfound = 1 cntnan = cntnan + 1 else: cf.append(song_duration) # Feature 4 # Get song tempo song_tempo = GETTERS.get_tempo(h5) if math.isnan(song_tempo): nanfound = 1 cntnan = cntnan + 1 else: cf.append(song_tempo) # Feature 5: artist familarity artist_familiarity = GETTERS.get_artist_familiarity(h5) if math.isnan(artist_familiarity): nanfound = 1 cntnan = cntnan + 1 else: cf.append(artist_familiarity) # Feature 6: artist_hotness artist_hotness = GETTERS.get_artist_hotttnesss(h5) if math.isnan(artist_hotness): nanfound = 1 cntnan = cntnan + 1 else: cf.append(artist_hotness) # Feature 7 time signature time_signature = GETTERS.get_time_signature(h5) cf.append(time_signature) # Feature 8 # Loudness COV loudness_segments = np.array(GETTERS.get_segments_loudness_max(h5)) loudness_cov = abs(variation(loudness_segments)) if math.isnan(loudness_cov): nanfound = 1 cntnan = cntnan + 1 else: cf.append(loudness_cov) # Feature 9 # Beat COV beat_segments = np.array(GETTERS.get_beats_start(h5)) beat_cov = abs(variation(beat_segments)) if math.isnan(beat_cov): nanfound = 1 cntnan = cntnan + 1 else: cf.append(beat_cov) # Feature 10 # Year song_year = GETTERS.get_year(h5) if song_year == 0: nanfound = 1 cntnan = cntnan + 1 else: cf.append(song_year) if nanfound == 0: strlist = list_to_csv(cf) listfeatures.append(strlist) strtitle = GETTERS.get_title(h5) listtitle.append(strtitle) h5.close()
def main(): basedir = "./../songMetaInfo.txt" ext = ".h5" if len(sys.argv) > 1: basedir = sys.argv[1] outputfile = 'SongFileMetaData.csv' if len(sys.argv) > 2: outputfile = sys.argv[2] csvWriter = open(outputfile, 'w') csvWriter.write( "title,songId,artistId,artistfamilarity,artistHotness,songHotness," + "songEnfOfFadeIn,startFadeout,energy,loudness,albumID,albumName,artistName,danceability,duration,keySignatureConfidence,tempo,timeSignature,timeSignatureConfidence,year\n" ) with open(basedir) as file: for line in file.readlines(): f = line.strip() #newf = f + "text" print f #print f try: songH5File = hdf5_getters.open_h5_file_read(f) csvStr = "" #0 title = str(hdf5_getters.get_title(songH5File)) csvStr += title + "," #1 songId = str(hdf5_getters.get_song_id(songH5File)) csvStr += songId + "," #2 artistId = str(hdf5_getters.get_artist_id(songH5File)) csvStr += artistId + "," #3 artistfamilarity = str( hdf5_getters.get_artist_familiarity(songH5File)) csvStr += artistfamilarity + "," #4 artistHotness = str( hdf5_getters.get_artist_hotttnesss(songH5File)) csvStr += artistHotness + "," #5 songHotness = str(hdf5_getters.get_song_hotttnesss(songH5File)) csvStr += songHotness + "," #6 songEnfOfFadeIn = str( hdf5_getters.get_end_of_fade_in(songH5File)) csvStr += songEnfOfFadeIn + "," #7 startFadeOut = str( hdf5_getters.get_start_of_fade_out(songH5File)) csvStr += startFadeOut + "," #8 energy = str(hdf5_getters.get_energy(songH5File)) csvStr += energy + "," #9 loudness = str(hdf5_getters.get_loudness(songH5File)) csvStr += loudness + "," #10 albumID = str(hdf5_getters.get_release_7digitalid(songH5File)) csvStr += albumID + "," #11 albumName = str(hdf5_getters.get_release(songH5File)) csvStr += albumName + "," #12 artistName = str(hdf5_getters.get_artist_name(songH5File)) csvStr += artistName + "," #13 danceability = str(hdf5_getters.get_danceability(songH5File)) csvStr += danceability + "," #14 duration = str(hdf5_getters.get_duration(songH5File)) csvStr += duration + "," #15 keySignatureConfidence = str( hdf5_getters.get_key_confidence(songH5File)) csvStr += keySignatureConfidence + "," #16 tempo = str(hdf5_getters.get_tempo(songH5File)) csvStr += tempo + "," ## 17 timeSignature = str( hdf5_getters.get_time_signature(songH5File)) csvStr += timeSignature + "," #18 timeSignatureConfidence = str( hdf5_getters.get_time_signature_confidence(songH5File)) csvStr += timeSignatureConfidence + "," #19 year = str(hdf5_getters.get_year(songH5File)) csvStr += year + "," #print song count csvStr += "\n" csvWriter.write(csvStr) #print csvStr songH5File.close() except: print "Error in processing file" csvWriter.close()
def data_to_flat_file(basedir,ext='.h5') : """This function extract the information from the tables and creates the flat file.""" count = 0; #song counter list_to_write= [] row_to_write = "" writer = csv.writer(open("metadata.csv", "wb")) for root, dirs, files in os.walk(basedir): files = glob.glob(os.path.join(root,'*'+ext)) for f in files: print f #the name of the file h5 = hdf5_getters.open_h5_file_read(f) title = hdf5_getters.get_title(h5) title= title.replace('"','') comma=title.find(',') #eliminating commas in the title if comma != -1: print title time.sleep(1) album = hdf5_getters.get_release(h5) album= album.replace('"','') #eliminating commas in the album comma=album.find(',') if comma != -1: print album time.sleep(1) artist_name = hdf5_getters.get_artist_name(h5) comma=artist_name.find(',') if comma != -1: print artist_name time.sleep(1) artist_name= artist_name.replace('"','') #eliminating double quotes duration = hdf5_getters.get_duration(h5) samp_rt = hdf5_getters.get_analysis_sample_rate(h5) artist_7digitalid = hdf5_getters.get_artist_7digitalid(h5) artist_fam = hdf5_getters.get_artist_familiarity(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(artist_fam) == True: artist_fam=-1 artist_hotness= hdf5_getters.get_artist_hotttnesss(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(artist_hotness) == True: artist_hotness=-1 artist_id = hdf5_getters.get_artist_id(h5) artist_lat = hdf5_getters.get_artist_latitude(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(artist_lat) == True: artist_lat=-1 artist_loc = hdf5_getters.get_artist_location(h5) #checks artist_loc to see if it is a hyperlink if it is set as empty string artist_loc = artist_loc.replace(",", "\,"); if artist_loc.startswith("<a"): artist_loc = "" if len(artist_loc) > 100: artist_loc = "" artist_lon = hdf5_getters.get_artist_longitude(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(artist_lon) == True: artist_lon=-1 artist_mbid = hdf5_getters.get_artist_mbid(h5) artist_pmid = hdf5_getters.get_artist_playmeid(h5) audio_md5 = hdf5_getters.get_audio_md5(h5) danceability = hdf5_getters.get_danceability(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(danceability) == True: danceability=-1 end_fade_in =hdf5_getters.get_end_of_fade_in(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(end_fade_in) == True: end_fade_in=-1 energy = hdf5_getters.get_energy(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(energy) == True: energy=-1 song_key = hdf5_getters.get_key(h5) key_c = hdf5_getters.get_key_confidence(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(key_c) == True: key_c=-1 loudness = hdf5_getters.get_loudness(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(loudness) == True: loudness=-1 mode = hdf5_getters.get_mode(h5) mode_conf = hdf5_getters.get_mode_confidence(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(mode_conf) == True: mode_conf=-1 release_7digitalid = hdf5_getters.get_release_7digitalid(h5) song_hot = hdf5_getters.get_song_hotttnesss(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(song_hot) == True: song_hot=-1 song_id = hdf5_getters.get_song_id(h5) start_fade_out = hdf5_getters.get_start_of_fade_out(h5) tempo = hdf5_getters.get_tempo(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(tempo) == True: tempo=-1 time_sig = hdf5_getters.get_time_signature(h5) time_sig_c = hdf5_getters.get_time_signature_confidence(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(time_sig_c) == True: time_sig_c=-1 track_id = hdf5_getters.get_track_id(h5) track_7digitalid = hdf5_getters.get_track_7digitalid(h5) year = hdf5_getters.get_year(h5) bars_c = hdf5_getters.get_bars_confidence(h5) bars_c_avg= get_avg(bars_c) bars_c_max= get_max(bars_c) bars_c_min = get_min(bars_c) bars_c_stddev= get_stddev(bars_c) bars_c_count = get_count(bars_c) bars_c_sum = get_sum(bars_c) bars_start = hdf5_getters.get_bars_start(h5) bars_start_avg = get_avg(bars_start) bars_start_max= get_max(bars_start) bars_start_min = get_min(bars_start) bars_start_stddev= get_stddev(bars_start) bars_start_count = get_count(bars_start) bars_start_sum = get_sum(bars_start) beats_c = hdf5_getters.get_beats_confidence(h5) beats_c_avg= get_avg(beats_c) beats_c_max= get_max(beats_c) beats_c_min = get_min(beats_c) beats_c_stddev= get_stddev(beats_c) beats_c_count = get_count(beats_c) beats_c_sum = get_sum(beats_c) beats_start = hdf5_getters.get_beats_start(h5) beats_start_avg = get_avg(beats_start) beats_start_max= get_max(beats_start) beats_start_min = get_min(beats_start) beats_start_stddev= get_stddev(beats_start) beats_start_count = get_count(beats_start) beats_start_sum = get_sum(beats_start) sec_c = hdf5_getters.get_sections_confidence(h5) sec_c_avg= get_avg(sec_c) sec_c_max= get_max(sec_c) sec_c_min = get_min(sec_c) sec_c_stddev= get_stddev(sec_c) sec_c_count = get_count(sec_c) sec_c_sum = get_sum(sec_c) sec_start = hdf5_getters.get_sections_start(h5) sec_start_avg = get_avg(sec_start) sec_start_max= get_max(sec_start) sec_start_min = get_min(sec_start) sec_start_stddev= get_stddev(sec_start) sec_start_count = get_count(sec_start) sec_start_sum = get_sum(sec_start) seg_c = hdf5_getters.get_segments_confidence(h5) seg_c_avg= get_avg(seg_c) seg_c_max= get_max(seg_c) seg_c_min = get_min(seg_c) seg_c_stddev= get_stddev(seg_c) seg_c_count = get_count(seg_c) seg_c_sum = get_sum(seg_c) seg_loud_max = hdf5_getters.get_segments_loudness_max(h5) seg_loud_max_avg= get_avg(seg_loud_max) seg_loud_max_max= get_max(seg_loud_max) seg_loud_max_min = get_min(seg_loud_max) seg_loud_max_stddev= get_stddev(seg_loud_max) seg_loud_max_count = get_count(seg_loud_max) seg_loud_max_sum = get_sum(seg_loud_max) seg_loud_max_time = hdf5_getters.get_segments_loudness_max_time(h5) seg_loud_max_time_avg= get_avg(seg_loud_max_time) seg_loud_max_time_max= get_max(seg_loud_max_time) seg_loud_max_time_min = get_min(seg_loud_max_time) seg_loud_max_time_stddev= get_stddev(seg_loud_max_time) seg_loud_max_time_count = get_count(seg_loud_max_time) seg_loud_max_time_sum = get_sum(seg_loud_max_time) seg_loud_start = hdf5_getters.get_segments_loudness_start(h5) seg_loud_start_avg= get_avg(seg_loud_start) seg_loud_start_max= get_max(seg_loud_start) seg_loud_start_min = get_min(seg_loud_start) seg_loud_start_stddev= get_stddev(seg_loud_start) seg_loud_start_count = get_count(seg_loud_start) seg_loud_start_sum = get_sum(seg_loud_start) seg_pitch = hdf5_getters.get_segments_pitches(h5) pitch_size = len(seg_pitch) seg_start = hdf5_getters.get_segments_start(h5) seg_start_avg= get_avg(seg_start) seg_start_max= get_max(seg_start) seg_start_min = get_min(seg_start) seg_start_stddev= get_stddev(seg_start) seg_start_count = get_count(seg_start) seg_start_sum = get_sum(seg_start) seg_timbre = hdf5_getters.get_segments_timbre(h5) tatms_c = hdf5_getters.get_tatums_confidence(h5) tatms_c_avg= get_avg(tatms_c) tatms_c_max= get_max(tatms_c) tatms_c_min = get_min(tatms_c) tatms_c_stddev= get_stddev(tatms_c) tatms_c_count = get_count(tatms_c) tatms_c_sum = get_sum(tatms_c) tatms_start = hdf5_getters.get_tatums_start(h5) tatms_start_avg= get_avg(tatms_start) tatms_start_max= get_max(tatms_start) tatms_start_min = get_min(tatms_start) tatms_start_stddev= get_stddev(tatms_start) tatms_start_count = get_count(tatms_start) tatms_start_sum = get_sum(tatms_start) #Getting the genres genre_set = 0 #flag to see if the genre has been set or not art_trm = hdf5_getters.get_artist_terms(h5) trm_freq = hdf5_getters.get_artist_terms_freq(h5) trn_wght = hdf5_getters.get_artist_terms_weight(h5) a_mb_tags = hdf5_getters.get_artist_mbtags(h5) genre_indexes=get_genre_indexes(trm_freq) #index of the highest freq final_genre=[] genres_so_far=[] for i in range(len(genre_indexes)): genre_tmp=get_genre(art_trm,genre_indexes[i]) #genre that corresponds to the highest freq genres_so_far=genre_dict.get_genre_in_dict(genre_tmp) #getting the genre from the dictionary if len(genres_so_far) != 0: for i in genres_so_far: final_genre.append(i) genre_set=1 #genre was found in dictionary if genre_set == 1: col_num=[] for genre in final_genre: column=int(genre) #getting the column number of the genre col_num.append(column) genre_array=genre_columns(col_num) #genre array else: genre_array=genre_columns(-1) #the genre was not found in the dictionary transpose_pitch= seg_pitch.transpose() #this is to tranpose the matrix,so we can have 12 rows #arrays containing the aggregate values of the 12 rows seg_pitch_avg=[] seg_pitch_max=[] seg_pitch_min=[] seg_pitch_stddev=[] seg_pitch_count=[] seg_pitch_sum=[] i=0 #Getting the aggregate values in the pitches array for row in transpose_pitch: seg_pitch_avg.append(get_avg(row)) seg_pitch_max.append(get_max(row)) seg_pitch_min.append(get_min(row)) seg_pitch_stddev.append(get_stddev(row)) seg_pitch_count.append(get_count(row)) seg_pitch_sum.append(get_sum(row)) i=i+1 #extracting information from the timbre array transpose_timbre = seg_pitch.transpose() #tranposing matrix, to have 12 rows #arrays containing the aggregate values of the 12 rows seg_timbre_avg=[] seg_timbre_max=[] seg_timbre_min=[] seg_timbre_stddev=[] seg_timbre_count=[] seg_timbre_sum=[] i=0 for row in transpose_timbre: seg_timbre_avg.append(get_avg(row)) seg_timbre_max.append(get_max(row)) seg_timbre_min.append(get_min(row)) seg_timbre_stddev.append(get_stddev(row)) seg_timbre_count.append(get_count(row)) seg_timbre_sum.append(get_sum(row)) i=i+1 #Writing to the flat file writer.writerow([title,album,artist_name,duration,samp_rt,artist_7digitalid,artist_fam,artist_hotness,artist_id,artist_lat,artist_loc,artist_lon,artist_mbid,genre_array[0],genre_array[1],genre_array[2], genre_array[3],genre_array[4],genre_array[5],genre_array[6],genre_array[7],genre_array[8],genre_array[9],genre_array[10],genre_array[11],genre_array[12],genre_array[13],genre_array[14],genre_array[15], genre_array[16],genre_array[17],genre_array[18],genre_array[19],genre_array[20],genre_array[21],genre_array[22],genre_array[23],genre_array[24],genre_array[25],genre_array[26], genre_array[27],genre_array[28],genre_array[29],genre_array[30],genre_array[31],genre_array[32],genre_array[33],genre_array[34],genre_array[35],genre_array[36],genre_array[37],genre_array[38], genre_array[39],genre_array[40],genre_array[41],genre_array[42],genre_array[43],genre_array[44],genre_array[45],genre_array[46],genre_array[47],genre_array[48],genre_array[49], genre_array[50],genre_array[51],genre_array[52],genre_array[53],genre_array[54],genre_array[55],genre_array[56],genre_array[57],genre_array[58],genre_array[59], genre_array[60],genre_array[61],genre_array[62],genre_array[63],genre_array[64],genre_array[65],genre_array[66],genre_array[67],genre_array[68],genre_array[69], genre_array[70],genre_array[71],genre_array[72],genre_array[73],genre_array[74],genre_array[75],genre_array[76],genre_array[77],genre_array[78],genre_array[79], genre_array[80],genre_array[81],genre_array[82],genre_array[83],genre_array[84],genre_array[85],genre_array[86],genre_array[87],genre_array[88],genre_array[89], genre_array[90],genre_array[91],genre_array[92],genre_array[93],genre_array[94],genre_array[95],genre_array[96],genre_array[97],genre_array[98],genre_array[99],genre_array[100],genre_array[101], genre_array[102],genre_array[103],genre_array[104],genre_array[105],genre_array[106],genre_array[107],genre_array[108],genre_array[109],genre_array[110],genre_array[111],genre_array[112], genre_array[113],genre_array[114],genre_array[115],genre_array[116],genre_array[117],genre_array[118],genre_array[119],genre_array[120],genre_array[121],genre_array[122],genre_array[123], genre_array[124],genre_array[125],genre_array[126],genre_array[127],genre_array[128],genre_array[129],genre_array[130],genre_array[131],genre_array[132], artist_pmid,audio_md5,danceability,end_fade_in,energy,song_key,key_c,loudness,mode,mode_conf,release_7digitalid,song_hot,song_id,start_fade_out,tempo,time_sig,time_sig_c,track_id,track_7digitalid,year,bars_c_avg,bars_c_max,bars_c_min,bars_c_stddev,bars_c_count,bars_c_sum,bars_start_avg,bars_start_max,bars_start_min,bars_start_stddev,bars_start_count,bars_start_sum,beats_c_avg,beats_c_max,beats_c_min,beats_c_stddev,beats_c_count,beats_c_sum,beats_start_avg,beats_start_max,beats_start_min, beats_start_stddev,beats_start_count,beats_start_sum, sec_c_avg,sec_c_max,sec_c_min,sec_c_stddev,sec_c_count,sec_c_sum,sec_start_avg,sec_start_max,sec_start_min,sec_start_stddev,sec_start_count,sec_start_sum,seg_c_avg,seg_c_max,seg_c_min,seg_c_stddev,seg_c_count,seg_c_sum,seg_loud_max_avg,seg_loud_max_max,seg_loud_max_min,seg_loud_max_stddev,seg_loud_max_count,seg_loud_max_sum,seg_loud_max_time_avg,seg_loud_max_time_max,seg_loud_max_time_min,seg_loud_max_time_stddev,seg_loud_max_time_count,seg_loud_max_time_sum,seg_loud_start_avg,seg_loud_start_max,seg_loud_start_min,seg_loud_start_stddev,seg_loud_start_count,seg_loud_start_sum,seg_pitch_avg[0],seg_pitch_max[0],seg_pitch_min[0],seg_pitch_stddev[0],seg_pitch_count[0],seg_pitch_sum[0],seg_pitch_avg[1],seg_pitch_max[1],seg_pitch_min[1],seg_pitch_stddev[1],seg_pitch_count[1],seg_pitch_sum[1],seg_pitch_avg[2],seg_pitch_max[2],seg_pitch_min[2],seg_pitch_stddev[2],seg_pitch_count[2],seg_pitch_sum[2],seg_pitch_avg[3],seg_pitch_max[3],seg_pitch_min[3],seg_pitch_stddev[3],seg_pitch_count[3],seg_pitch_sum[3],seg_pitch_avg[4],seg_pitch_max[4],seg_pitch_min[4],seg_pitch_stddev[4],seg_pitch_count[4],seg_pitch_sum[4],seg_pitch_avg[5],seg_pitch_max[5],seg_pitch_min[5],seg_pitch_stddev[5],seg_pitch_count[5],seg_pitch_sum[5],seg_pitch_avg[6],seg_pitch_max[6],seg_pitch_min[6],seg_pitch_stddev[6],seg_pitch_count[6],seg_pitch_sum[6],seg_pitch_avg[7],seg_pitch_max[7],seg_pitch_min[7],seg_pitch_stddev[7],seg_pitch_count[7],seg_pitch_sum[7],seg_pitch_avg[8],seg_pitch_max[8],seg_pitch_min[8],seg_pitch_stddev[8],seg_pitch_count[8],seg_pitch_sum[8],seg_pitch_avg[9],seg_pitch_max[9],seg_pitch_min[9],seg_pitch_stddev[9],seg_pitch_count[9],seg_pitch_sum[9],seg_pitch_avg[10],seg_pitch_max[10],seg_pitch_min[10],seg_pitch_stddev[10],seg_pitch_count[10],seg_pitch_sum[10],seg_pitch_avg[11],seg_pitch_max[11],seg_pitch_min[11], seg_pitch_stddev[11],seg_pitch_count[11],seg_pitch_sum[11],seg_start_avg,seg_start_max,seg_start_min,seg_start_stddev, seg_start_count,seg_start_sum,seg_timbre_avg[0],seg_timbre_max[0],seg_timbre_min[0],seg_timbre_stddev[0],seg_timbre_count[0], seg_timbre_sum[0],seg_timbre_avg[1],seg_timbre_max[1],seg_timbre_min[1],seg_timbre_stddev[1],seg_timbre_count[1], seg_timbre_sum[1],seg_timbre_avg[2],seg_timbre_max[2],seg_timbre_min[2],seg_timbre_stddev[2],seg_timbre_count[2], seg_timbre_sum[2],seg_timbre_avg[3],seg_timbre_max[3],seg_timbre_min[3],seg_timbre_stddev[3],seg_timbre_count[3], seg_timbre_sum[3],seg_timbre_avg[4],seg_timbre_max[4],seg_timbre_min[4],seg_timbre_stddev[4],seg_timbre_count[4], seg_timbre_sum[4],seg_timbre_avg[5],seg_timbre_max[5],seg_timbre_min[5],seg_timbre_stddev[5],seg_timbre_count[5], seg_timbre_sum[5],seg_timbre_avg[6],seg_timbre_max[6],seg_timbre_min[6],seg_timbre_stddev[6],seg_timbre_count[6], seg_timbre_sum[6],seg_timbre_avg[7],seg_timbre_max[7],seg_timbre_min[7],seg_timbre_stddev[7],seg_timbre_count[7], seg_timbre_sum[7],seg_timbre_avg[8],seg_timbre_max[8],seg_timbre_min[8],seg_timbre_stddev[8],seg_timbre_count[8], seg_timbre_sum[8],seg_timbre_avg[9],seg_timbre_max[9],seg_timbre_min[9],seg_timbre_stddev[9],seg_timbre_count[9], seg_timbre_sum[9],seg_timbre_avg[10],seg_timbre_max[10],seg_timbre_min[10],seg_timbre_stddev[10],seg_timbre_count[10], seg_timbre_sum[10],seg_timbre_avg[11],seg_timbre_max[11],seg_timbre_min[11],seg_timbre_stddev[11],seg_timbre_count[11], seg_timbre_sum[11],tatms_c_avg,tatms_c_max,tatms_c_min,tatms_c_stddev,tatms_c_count,tatms_c_sum,tatms_start_avg,tatms_start_max,tatms_start_min,tatms_start_stddev,tatms_start_count,tatms_start_sum]) h5.close() count=count+1; print count;
def main(argv): if len(argv) != 1: print "Specify data directory" return basedir = argv[0] outputFile1 = open('SongCSV.csv', 'w') outputFile2 = open('TagsCSV.csv', 'w') csvRowString = "" csvLabelString = "" ################################################# #if you want to prompt the user for the order of attributes in the csv, #leave the prompt boolean set to True #else, set 'prompt' to False and set the order of attributes in the 'else' #clause prompt = False ################################################# if prompt == True: while prompt: prompt = False csvAttributeString = raw_input("\n\nIn what order would you like the colums of the CSV file?\n" + "Please delineate with commas. The options are: " + "AlbumName, AlbumID, ArtistID, ArtistLatitude, ArtistLocation, ArtistLongitude,"+ " ArtistName, Danceability, Duration, KeySignature, KeySignatureConfidence, Tempo," + " SongID, TimeSignature, TimeSignatureConfidence, Title, and Year.\n\n" + "For example, you may write \"Title, Tempo, Duration\"...\n\n" + "...or exit by typing 'exit'.\n\n") csvAttributeList = re.split('\W+', csvAttributeString) for i, v in enumerate(csvAttributeList): csvAttributeList[i] = csvAttributeList[i].lower() for attribute in csvAttributeList: # print "Here is the attribute: " + attribute + " \n" if attribute == 'AlbumID'.lower(): csvRowString += 'AlbumID' elif attribute == 'AlbumName'.lower(): csvRowString += 'AlbumName' elif attribute == 'ArtistID'.lower(): csvRowString += 'ArtistID' elif attribute == 'ArtistLatitude'.lower(): csvRowString += 'ArtistLatitude' elif attribute == 'ArtistLocation'.lower(): csvRowString += 'ArtistLocation' elif attribute == 'ArtistLongitude'.lower(): csvRowString += 'ArtistLongitude' elif attribute == 'ArtistName'.lower(): csvRowString += 'ArtistName' elif attribute == 'Danceability'.lower(): csvRowString += 'Danceability' elif attribute == 'Duration'.lower(): csvRowString += 'Duration' elif attribute == 'KeySignature'.lower(): csvRowString += 'KeySignature' elif attribute == 'KeySignatureConfidence'.lower(): csvRowString += 'KeySignatureConfidence' elif attribute == 'SongID'.lower(): csvRowString += "SongID" elif attribute == 'Tempo'.lower(): csvRowString += 'Tempo' elif attribute == 'TimeSignature'.lower(): csvRowString += 'TimeSignature' elif attribute == 'TimeSignatureConfidence'.lower(): csvRowString += 'TimeSignatureConfidence' elif attribute == 'Title'.lower(): csvRowString += 'Title' elif attribute == 'Year'.lower(): csvRowString += 'Year' elif attribute == 'Exit'.lower(): sys.exit() else: prompt = True print "==============" print "I believe there has been an error with the input." print "==============" break csvRowString += "," lastIndex = len(csvRowString) csvRowString = csvRowString[0:lastIndex-1] csvRowString += "\n" outputFile1.write(csvRowString); csvRowString = "" #else, if you want to hard code the order of the csv file and not prompt #the user, else: ################################################# #change the order of the csv file here #Default is to list all available attributes (in alphabetical order) #csvRowString = ("SongID,AlbumID,AlbumName,ArtistID,ArtistLatitude,ArtistLocation,"+ # "ArtistLongitude,ArtistName,Danceability,Duration,KeySignature,"+ # "KeySignatureConfidence,Tempo,TimeSignature,TimeSignatureConfidence,"+ # "Title,Year") csvRowString = ("ArtistFamiliarity,ArtistHotttnesss,"+ "BarsConfidence,BarsStart,BeatsConfidence,BeatsStart,Duration,"+ "EndOfFadeIn,Key,KeyConfidence,Loudness,Mode,ModeConfidence,"+ "SectionsConfidence,SectionsStart,SegmentsConfidence,SegmentsLoudnessMax,"+ "SegmentsLoudnessMaxTime,SegmentsLoudnessStart,SegmentsStart,"+ "SongHotttnesss,StartOfFadeOut,TatumsConfidence,TatumsStart,Tempo,TimeSignature,TimeSignatureConfidence,"+ "SegmentsPitches,SegmentsTimbre,Title,Year,Decade,ArtistMbtags") ################################################# header = str() csvAttributeList = re.split('\W+', csvRowString) arrayAttributes = ["BarsConfidence","BarsStart","BeatsConfidence","BeatsStart", "SectionsConfidence","SectionsStart","SegmentsConfidence","SegmentsLoudnessMax", "SegmentsLoudnessMaxTime","SegmentsLoudnessStart","SegmentsStart", "TatumsConfidence","TatumsStart"] for i, v in enumerate(csvAttributeList): csvAttributeList[i] = csvAttributeList[i].lower() if(v=="SegmentsPitches"): for i in range(90): header = header + "SegmentsPitches" + str(i) + "," elif(v=="SegmentsTimbre"): for i in range(90): header = header + "SegmentsTimbre" + str(i) + "," elif(v in arrayAttributes): header = header + v + str(0) + "," header = header + v + str(1) + "," else: header = header + v + "," outputFile1.write("SongNumber,"); #outputFile1.write(csvRowString + "\n"); outputFile1.write(header + "\n"); csvRowString = "" ################################################# #Set the basedir here, the root directory from which the search #for files stored in a (hierarchical data structure) will originate #basedir = "MillionSongSubset/data/A/A/" # "." As the default means the current directory ext = ".h5" #Set the extension here. H5 is the extension for HDF5 files. ################################################# #FOR LOOP all = sorted(os.walk(basedir)) for root, dirs, files in all: files = sorted(glob.glob(os.path.join(root,'*'+ext))) for f in files: print f songH5File = hdf5_getters.open_h5_file_read(f) song = Song(str(hdf5_getters.get_song_id(songH5File))) #testDanceability = hdf5_getters.get_danceability(songH5File) # print type(testDanceability) # print ("Here is the danceability: ") + str(testDanceability) song.analysisSampleRate = str(hdf5_getters.get_analysis_sample_rate(songH5File)) song.artistFamiliarity = str(hdf5_getters.get_artist_familiarity(songH5File)) song.artistHotttnesss = str(hdf5_getters.get_artist_hotttnesss(songH5File)) song.artistLatitude = str(hdf5_getters.get_artist_latitude(songH5File)) song.artistLongitude = str(hdf5_getters.get_artist_longitude(songH5File)) song.artistMbid = str(hdf5_getters.get_artist_mbid(songH5File)) song.barsConfidence = np.array(hdf5_getters.get_bars_confidence(songH5File)) song.barsStart = np.array(hdf5_getters.get_bars_start(songH5File)) song.beatsConfidence = np.array(hdf5_getters.get_beats_confidence(songH5File)) song.beatsStart = np.array(hdf5_getters.get_beats_start(songH5File)) song.danceability = str(hdf5_getters.get_danceability(songH5File)) song.duration = str(hdf5_getters.get_duration(songH5File)) song.endOfFadeIn = str(hdf5_getters.get_end_of_fade_in(songH5File)) song.energy = str(hdf5_getters.get_energy(songH5File)) song.key = str(hdf5_getters.get_key(songH5File)) song.keyConfidence = str(hdf5_getters.get_key_confidence(songH5File)) song.loudness = str(hdf5_getters.get_loudness(songH5File)) song.mode = str(hdf5_getters.get_mode(songH5File)) song.modeConfidence = str(hdf5_getters.get_mode_confidence(songH5File)) song.sectionsConfidence = np.array(hdf5_getters.get_sections_confidence(songH5File)) song.sectionsStart = np.array(hdf5_getters.get_sections_start(songH5File)) song.segmentsConfidence = np.array(hdf5_getters.get_segments_confidence(songH5File)) song.segmentsLoudnessMax = np.array(hdf5_getters.get_segments_loudness_max(songH5File)) song.segmentsLoudnessMaxTime = np.array(hdf5_getters.get_segments_loudness_max_time(songH5File)) song.segmentsLoudnessStart = np.array(hdf5_getters.get_segments_loudness_start(songH5File)) song.segmentsPitches = np.array(hdf5_getters.get_segments_pitches(songH5File)) song.segmentsStart = np.array(hdf5_getters.get_segments_start(songH5File)) song.segmentsTimbre = np.array(hdf5_getters.get_segments_timbre(songH5File)) song.songHotttnesss = str(hdf5_getters.get_song_hotttnesss(songH5File)) song.startOfFadeOut = str(hdf5_getters.get_start_of_fade_out(songH5File)) song.tatumsConfidence = np.array(hdf5_getters.get_tatums_confidence(songH5File)) song.tatumsStart = np.array(hdf5_getters.get_tatums_start(songH5File)) song.tempo = str(hdf5_getters.get_tempo(songH5File)) song.timeSignature = str(hdf5_getters.get_time_signature(songH5File)) song.timeSignatureConfidence = str(hdf5_getters.get_time_signature_confidence(songH5File)) song.songid = str(hdf5_getters.get_song_id(songH5File)) song.title = str(hdf5_getters.get_title(songH5File)) song.year = str(hdf5_getters.get_year(songH5File)) song.artistMbtags = str(hdf5_getters.get_artist_mbtags(songH5File)) #print song count csvRowString += str(song.songCount) + "," csvLabelString += str(song.songCount) + "," for attribute in csvAttributeList: # print "Here is the attribute: " + attribute + " \n" if attribute == 'AnalysisSampleRate'.lower(): csvRowString += song.analysisSampleRate elif attribute == 'ArtistFamiliarity'.lower(): csvRowString += song.artistFamiliarity elif attribute == 'ArtistHotttnesss'.lower(): csvRowString += song.artistHotttnesss elif attribute == 'ArtistLatitude'.lower(): latitude = song.artistLatitude if latitude == 'nan': latitude = '' csvRowString += latitude elif attribute == 'ArtistLongitude'.lower(): longitude = song.artistLongitude if longitude == 'nan': longitude = '' csvRowString += longitude elif attribute == 'ArtistMbid'.lower(): csvRowString += song.artistMbid elif attribute == 'BarsConfidence'.lower(): arr = song.barsConfidence if arr.shape[0] == 0: arrmean = '' arrnorm = '' else: arrmean = np.mean(arr) arrnorm = np.linalg.norm(arr) csvRowString += str(arrmean) + ',' + str(arrnorm) elif attribute == 'BarsStart'.lower(): arr = song.barsStart if arr.shape[0] == 0: arrmean = '' arrnorm = '' else: arrmean = np.mean(arr) arrnorm = np.linalg.norm(arr) csvRowString += str(arrmean) + ',' + str(arrnorm) elif attribute == 'BeatsConfidence'.lower(): arr = song.beatsConfidence if arr.shape[0] == 0: arrmean = '' arrnorm = '' else: arrmean = np.mean(arr) arrnorm = np.linalg.norm(arr) csvRowString += str(arrmean) + ',' + str(arrnorm) elif attribute == 'BeatsStart'.lower(): arr = song.beatsStart if arr.shape[0] == 0: arrmean = '' arrnorm = '' else: arrmean = np.mean(arr) arrnorm = np.linalg.norm(arr) csvRowString += str(arrmean) + ',' + str(arrnorm) elif attribute == 'Danceability'.lower(): csvRowString += song.danceability elif attribute == 'Duration'.lower(): csvRowString += song.duration elif attribute == 'EndOfFadeIn'.lower(): csvRowString += song.endOfFadeIn elif attribute == 'Energy'.lower(): csvRowString += song.energy elif attribute == 'Key'.lower(): csvRowString += song.key elif attribute == 'KeyConfidence'.lower(): csvRowString += song.keyConfidence elif attribute == 'Loudness'.lower(): csvRowString += song.loudness elif attribute == 'Mode'.lower(): csvRowString += song.mode elif attribute == 'ModeConfidence'.lower(): csvRowString += song.modeConfidence elif attribute == 'SectionsConfidence'.lower(): arr = song.sectionsConfidence if arr.shape[0] == 0: arrmean = '' arrnorm = '' else: arrmean = np.mean(arr) arrnorm = np.linalg.norm(arr) csvRowString += str(arrmean) + ',' + str(arrnorm) elif attribute == 'SectionsStart'.lower(): arr = song.sectionsStart if arr.shape[0] == 0: arrmean = '' arrnorm = '' else: arrmean = np.mean(arr) arrnorm = np.linalg.norm(arr) csvRowString += str(arrmean) + ',' + str(arrnorm) elif attribute == 'SegmentsConfidence'.lower(): arr = song.segmentsConfidence if arr.shape[0] == 0: arrmean = '' arrnorm = '' else: arrmean = np.mean(arr) arrnorm = np.linalg.norm(arr) csvRowString += str(arrmean) + ',' + str(arrnorm) elif attribute == 'SegmentsLoudnessMax'.lower(): arr = song.segmentsLoudnessMax if arr.shape[0] == 0: arrmean = '' arrnorm = '' else: arrmean = np.mean(arr) arrnorm = np.linalg.norm(arr) csvRowString += str(arrmean) + ',' + str(arrnorm) elif attribute == 'SegmentsLoudnessMaxTime'.lower(): arr = song.segmentsLoudnessMaxTime if arr.shape[0] == 0: arrmean = '' arrnorm = '' else: arrmean = np.mean(arr) arrnorm = np.linalg.norm(arr) csvRowString += str(arrmean) + ',' + str(arrnorm) elif attribute == 'SegmentsLoudnessStart'.lower(): arr = song.segmentsLoudnessStart if arr.shape[0] == 0: arrmean = '' arrnorm = '' else: arrmean = np.mean(arr) arrnorm = np.linalg.norm(arr) csvRowString += str(arrmean) + ',' + str(arrnorm) elif attribute == 'SegmentsStart'.lower(): arr = song.segmentsStart if arr.shape[0] == 0: arrmean = '' arrnorm = '' else: arrmean = np.mean(arr) arrnorm = np.linalg.norm(arr) csvRowString += str(arrmean) + ',' + str(arrnorm) elif attribute == 'SongHotttnesss'.lower(): hotttnesss = song.songHotttnesss if hotttnesss == 'nan': hotttnesss = 'NaN' csvRowString += hotttnesss elif attribute == 'StartOfFadeOut'.lower(): csvRowString += song.startOfFadeOut elif attribute == 'TatumsConfidence'.lower(): arr = song.tatumsConfidence if arr.shape[0] == 0: arrmean = '' arrnorm = '' else: arrmean = np.mean(arr) arrnorm = np.linalg.norm(arr) csvRowString += str(arrmean) + ',' + str(arrnorm) elif attribute == 'TatumsStart'.lower(): arr = song.tatumsStart if arr.shape[0] == 0: arrmean = '' arrnorm = '' else: arrmean = np.mean(arr) arrnorm = np.linalg.norm(arr) csvRowString += str(arrmean) + ',' + str(arrnorm) elif attribute == 'Tempo'.lower(): # print "Tempo: " + song.tempo csvRowString += song.tempo elif attribute == 'TimeSignature'.lower(): csvRowString += song.timeSignature elif attribute == 'TimeSignatureConfidence'.lower(): # print "time sig conf: " + song.timeSignatureConfidence csvRowString += song.timeSignatureConfidence elif attribute == 'SegmentsPitches'.lower(): colmean = np.mean(song.segmentsPitches,axis=0) for m in colmean: csvRowString += str(m) + "," cov = np.dot(song.segmentsPitches.T,song.segmentsPitches) utriind = np.triu_indices(cov.shape[0]) feats = cov[utriind] for feat in feats: csvRowString += str(feat) + "," lastIndex = len(csvRowString) csvRowString = csvRowString[0:lastIndex-1] elif attribute == 'SegmentsTimbre'.lower(): colmean = np.mean(song.segmentsTimbre,axis=0) for m in colmean: csvRowString += str(m) + "," cov = np.dot(song.segmentsTimbre.T,song.segmentsTimbre) utriind = np.triu_indices(cov.shape[0]) feats = cov[utriind] for feat in feats: csvRowString += str(feat) + "," lastIndex = len(csvRowString) csvRowString = csvRowString[0:lastIndex-1] elif attribute == 'SongID'.lower(): csvRowString += "\"" + song.id + "\"" elif attribute == 'Title'.lower(): csvRowString += "\"" + song.title + "\"" elif attribute == 'Year'.lower(): csvRowString += song.year elif attribute == 'Decade'.lower(): yr = song.year if yr > 0: decade = song.year[:-1] + '0' else: decade = '0' csvRowString += decade elif attribute == 'ArtistMbtags'.lower(): tags = song.artistMbtags[1:-1] tags = "\"" + tags + "\"" tags = tags.replace("\n",'') csvRowString += tags tagsarray = shlex.split(tags) for t in tagsarray: csvLabelString += t + "," else: csvRowString += "Erm. This didn't work. Error. :( :(\n" csvRowString += "," ''' if attribute == 'AlbumID'.lower(): csvRowString += song.albumID elif attribute == 'AlbumName'.lower(): albumName = song.albumName albumName = albumName.replace(',',"") csvRowString += "\"" + albumName + "\"" elif attribute == 'ArtistID'.lower(): csvRowString += "\"" + song.artistID + "\"" elif attribute == 'ArtistLatitude'.lower(): latitude = song.artistLatitude if latitude == 'nan': latitude = '' csvRowString += latitude elif attribute == 'ArtistLocation'.lower(): location = song.artistLocation location = location.replace(',','') csvRowString += "\"" + location + "\"" elif attribute == 'ArtistLongitude'.lower(): longitude = song.artistLongitude if longitude == 'nan': longitude = '' csvRowString += longitude elif attribute == 'ArtistName'.lower(): csvRowString += "\"" + song.artistName + "\"" elif attribute == 'Danceability'.lower(): csvRowString += song.danceability elif attribute == 'Duration'.lower(): csvRowString += song.duration elif attribute == 'KeySignature'.lower(): csvRowString += song.keySignature elif attribute == 'KeySignatureConfidence'.lower(): # print "key sig conf: " + song.timeSignatureConfidence csvRowString += song.keySignatureConfidence elif attribute == 'SongID'.lower(): csvRowString += "\"" + song.id + "\"" elif attribute == 'Tempo'.lower(): # print "Tempo: " + song.tempo csvRowString += song.tempo elif attribute == 'TimeSignature'.lower(): csvRowString += song.timeSignature elif attribute == 'TimeSignatureConfidence'.lower(): # print "time sig conf: " + song.timeSignatureConfidence csvRowString += song.timeSignatureConfidence elif attribute == 'Title'.lower(): csvRowString += "\"" + song.title + "\"" elif attribute == 'Year'.lower(): csvRowString += song.year else: csvRowString += "Erm. This didn't work. Error. :( :(\n" csvRowString += "," ''' #Remove the final comma from each row in the csv lastIndex = len(csvRowString) csvRowString = csvRowString[0:lastIndex-1] csvRowString += "\n" outputFile1.write(csvRowString) csvRowString = "" lastIndex = len(csvLabelString) csvLabelString = csvLabelString[0:lastIndex-1] csvLabelString += "\n" outputFile2.write(csvLabelString) csvLabelString = "" songH5File.close() outputFile1.close() outputFile2.close()
def get_all_files(basedir,ext='.h5') : """ From a root directory, go through all subdirectories and find all files with the given extension. Return all absolute paths in a list. """ c=0 title=[]#get_title(h5) name=[]#get_artist_name` familiarity=[]#get_artist_familiarity() artist_hotness=[]#get_artist_hotttnesss song_hotness=[]# get_song_hotttnesss danceability=[]#get_danceability energy=[]#get_energy loudness=[]#get_loudness tempo=[]#get_tempo mode_confidence=[]#get_mode_confidence() time_sig_confidence=[]#get_time_signature_confidence() no_segments=[]#len(get_segments_start()) avg_segment_confidence=[]#np.mean(hdf5_getters.get_segments_confidence(h5)) avg_segment_pitches=[]#np.mean(hdf5_getters.get_segments_pitches(h51)) no_sections=[]#len(hdf5_getters.get_sections_start()) avg_sections_confidence=[]#np.mean(hdf5_getters.get_sections_confidence(h51)) no_beats_start=[]#len(hdf5_getters.get_beats_start(h51)) avg_beats_confidence=[]#np.mean(hdf5_getters.get_beats_confidence(h51)) no_bars=[]#len(hdf5_getters.get_bars_start(h5)) avg_bar_confidence=[]#np.mean(hdf5_getters.get_bars_confidence((h51)) no_tatums_start=[]#len(hdf5_getters.get_tatums_start(h5)) avg_tatums_start=[]#np.mean(get_tatums_confidence()) billboard_presence=[]#returned value from web scraper key=[] duration=[] mode=[] target=pd.read_csv('Billboard.csv') j=0 if(not(os.path.isfile('./data.csv'))): for root, dirs, files in os.walk(basedir): files = glob.glob(os.path.join(root,'*'+ext)) for f in files : h5 = hdf5_getters.open_h5_file_read(f) songnme=hdf5_getters.get_title(h5) artst=hdf5_getters.get_artist_name(h5) for i in range(len(target)): if(target.Title[i]==songnme and target.Name[i]==artst): billboard_presence.append(target.Presence[i]) title.append(songnme) name.append(artst) familiarity.append(hdf5_getters.get_artist_familiarity(h5)) artist_hotness.append(hdf5_getters.get_artist_hotttnesss(h5)) song_hotness.append(hdf5_getters. get_song_hotttnesss(h5)) danceability.append(hdf5_getters.get_danceability(h5)) key.append(hdf5_getters.get_key(h5)) duration.append(hdf5_getters.get_duration(h5)) mode.append(hdf5_getters.get_mode(h5)) energy.append(hdf5_getters.get_energy(h5)) loudness.append(hdf5_getters.get_loudness(h5)) tempo.append(hdf5_getters.get_tempo(h5)) mode_confidence.append(hdf5_getters.get_mode_confidence(h5)) time_sig_confidence.append(hdf5_getters.get_time_signature_confidence(h5)) no_segments.append(len(hdf5_getters.get_segments_start(h5))) avg_segment_confidence.append(np.mean(hdf5_getters.get_segments_confidence(h5))) avg_segment_pitches.append(np.mean(hdf5_getters.get_segments_pitches(h5))) no_sections.append(len(hdf5_getters.get_sections_start(h5))) avg_sections_confidence.append(np.mean(hdf5_getters.get_sections_confidence(h5))) no_beats_start.append(len(hdf5_getters.get_beats_start(h5))) avg_beats_confidence.append(np.mean(hdf5_getters.get_beats_confidence(h5))) no_bars.append(len(hdf5_getters.get_bars_start(h5))) avg_bar_confidence.append(np.mean(hdf5_getters.get_bars_confidence(h5))) no_tatums_start.append(len(hdf5_getters.get_tatums_start(h5))) avg_tatums_start.append(np.mean(hdf5_getters.get_tatums_confidence(h5))) j+=1 print j #prints the index number of each song, to keep track of the song being saved to the database, and to identify errors. break; h5.close() print "Created Arrays" df=pd.DataFrame(title,columns=['Title']) df['Artist_Name']=name df['Familiarity']=familiarity df['Hotness']=artist_hotness df['Song_hotness']=song_hotness df['Danceability']=danceability df['energy']=energy df['loudness']=loudness df['tempo']=tempo df['mode_confidence']=mode_confidence df['time_sig_confidence']=time_sig_confidence df['no_segments']=no_segments df['avg_segment_confidence']=avg_segment_confidence df['avg_segment_pitches']=avg_segment_pitches df['no_sections']=no_sections df['avg_sections_confidence']=avg_sections_confidence df['no_beats_start']=no_beats_start df['avg_beats_confidence']=avg_beats_confidence df['no_bars']=no_bars df['avg_bar_confidence']=avg_bar_confidence df['no_tatums_start']=no_tatums_start df['avg_tatums_start']=avg_tatums_start df['key']=key df['Mode']=mode df['duration']=duration df['Presence']=billboard_presence print df.head() print billboard_presence df.to_csv("data.csv") else: df=pd.read_csv('data.csv',index_col=0) print "Number of features in the created dataset:", print len(df.keys()) print return df
def hd5_single_random_file_parser(): # Open an h5 file in read mode h5 = hdf5_getters.open_h5_file_read( '/home/skalogerakis/Documents/MillionSong/MillionSongSubset/A/M/G/TRAMGDX12903CEF79F.h5' ) function_tracker = filter( lambda x: x.startswith('get'), hdf5_getters.__dict__.keys()) # Detects all the getter functions for f in function_tracker: # Print everything in function tracker print(f) # First effort to check what each field contains. print() # 55 available fields (exluding number of songs fields) print("Num of songs -- ", hdf5_getters.get_num_songs(h5)) # One song per file print("Title -- ", hdf5_getters.get_title(h5)) # Print the title of a specific h5 file print("Artist familiarity -- ", hdf5_getters.get_artist_familiarity(h5)) print("Artist hotness -- ", hdf5_getters.get_artist_hotttnesss(h5)) print("Artist ID -- ", hdf5_getters.get_artist_id(h5)) print("Artist mbID -- ", hdf5_getters.get_artist_mbid(h5)) print("Artist playmeid -- ", hdf5_getters.get_artist_playmeid(h5)) print("Artist 7DigitalID -- ", hdf5_getters.get_artist_7digitalid(h5)) print("Artist latitude -- ", hdf5_getters.get_artist_latitude(h5)) print("Artist longitude -- ", hdf5_getters.get_artist_longitude(h5)) print("Artist location -- ", hdf5_getters.get_artist_location(h5)) print("Artist Name -- ", hdf5_getters.get_artist_name(h5)) print("Release -- ", hdf5_getters.get_release(h5)) print("Release 7DigitalID -- ", hdf5_getters.get_release_7digitalid(h5)) print("Song ID -- ", hdf5_getters.get_song_id(h5)) print("Song Hotness -- ", hdf5_getters.get_song_hotttnesss(h5)) print("Track 7Digital -- ", hdf5_getters.get_track_7digitalid(h5)) print("Similar artists -- ", hdf5_getters.get_similar_artists(h5)) print("Artist terms -- ", hdf5_getters.get_artist_terms(h5)) print("Artist terms freq -- ", hdf5_getters.get_artist_terms_freq(h5)) print("Artist terms weight -- ", hdf5_getters.get_artist_terms_weight(h5)) print("Analysis sample rate -- ", hdf5_getters.get_analysis_sample_rate(h5)) print("Audio md5 -- ", hdf5_getters.get_audio_md5(h5)) print("Danceability -- ", hdf5_getters.get_danceability(h5)) print("Duration -- ", hdf5_getters.get_duration(h5)) print("End of Fade -- ", hdf5_getters.get_end_of_fade_in(h5)) print("Energy -- ", hdf5_getters.get_energy(h5)) print("Key -- ", hdf5_getters.get_key(h5)) print("Key Confidence -- ", hdf5_getters.get_key_confidence(h5)) print("Loudness -- ", hdf5_getters.get_loudness(h5)) print("Mode -- ", hdf5_getters.get_mode(h5)) print("Mode Confidence -- ", hdf5_getters.get_mode_confidence(h5)) print("Start of fade out -- ", hdf5_getters.get_start_of_fade_out(h5)) print("Tempo -- ", hdf5_getters.get_tempo(h5)) print("Time signature -- ", hdf5_getters.get_time_signature(h5)) print("Time signature confidence -- ", hdf5_getters.get_time_signature_confidence(h5)) print("Track ID -- ", hdf5_getters.get_track_id(h5)) print("Segments Start -- ", hdf5_getters.get_segments_start(h5)) print("Segments Confidence -- ", hdf5_getters.get_segments_confidence(h5)) print("Segments Pitches -- ", hdf5_getters.get_segments_pitches(h5)) print("Segments Timbre -- ", hdf5_getters.get_segments_timbre(h5)) print("Segments Loudness max -- ", hdf5_getters.get_segments_loudness_max(h5)) print("Segments Loudness max time-- ", hdf5_getters.get_segments_loudness_max_time(h5)) print("Segments Loudness start -- ", hdf5_getters.get_segments_loudness_start(h5)) print("Sections start -- ", hdf5_getters.get_sections_start(h5)) print("Sections Confidence -- ", hdf5_getters.get_sections_confidence(h5)) print("Beats start -- ", hdf5_getters.get_beats_start(h5)) print("Beats confidence -- ", hdf5_getters.get_beats_confidence(h5)) print("Bars start -- ", hdf5_getters.get_bars_start(h5)) print("Bars confidence -- ", hdf5_getters.get_bars_confidence(h5)) print("Tatums start -- ", hdf5_getters.get_tatums_start(h5)) print("Tatums confidence -- ", hdf5_getters.get_tatums_confidence(h5)) print("Artist mbtags -- ", hdf5_getters.get_artist_mbtags(h5)) print("Artist mbtags count -- ", hdf5_getters.get_artist_mbtags_count(h5)) print("Year -- ", hdf5_getters.get_year(h5)) fields = ['Title', 'Artist ID'] with open('Tester2.csv', 'w', newline='') as csvfile: csv_writer = csv.writer(csvfile, delimiter=';') # writing the fields csv_writer.writerow(fields) # writing the data rows csv_writer.writerow( [hdf5_getters.get_title(h5), hdf5_getters.get_artist_id(h5)]) h5.close() # close h5 when completed in the end
song_release_year = [] song_hotness = [] track_id = [] song_tempo = [] song_bars = [] song_beats = [] song_time_signatures =[] song_tatum = [] song_modes = [] song_keys = [] for f in files: h5 = tables.open_file(f) filepath = f artist_name = g.get_artist_name(h5) artist_familar = g.get_artist_familiarity(h5) artist_hot = g.get_artist_hotttnesss(h5) artist_ids = g.get_artist_id(h5) artist_lat = g.get_artist_latitude(h5) artist_long = g.get_artist_longitude(h5) artist_loc = g.get_artist_location(h5) song_idss = g.get_song_id(h5) song_speed = g.get_tempo(h5) song_bar = g.get_bars_start(h5) song_beat = g.get_beats_start(h5) song_time_signature = g.get_time_signature(h5) song_tat = g.get_tatums_start(h5) song_mode = g.get_mode(h5) song_key = g.get_key(h5) song_idss = g.get_song_id(h5) song_title = g.get_title(h5)
def main(): outputFile = open('songs.csv', 'w') writer = csv.writer(outputFile) csvRowString = "song_number,artist_familiarity,artist_hotttnesss,artist_id,artist_mbid,artist_playmeid,artist_7digitalid,artist_latitude,artist_longitude,artist_location,artist_name,release,release_7digitalid,song_id,song_hotttnesss,title,track_7digitalid,analysis_sample_rate,audio_md5,danceability,duration,end_of_fade_in,energy,key,key_confidence,loudness,mode,mode_confidence,start_of_fade_out,tempo,time_signature,time_signature_confidence,track_id,year" outputFile.write(csvRowString + "\n") csvRowString = "" ################################################# #Set the basedir here, the root directory from which the search #for files stored in a (hierarchical data structure) will originate basedir = "." # "." As the default means the current directory ext = ".H5" #Set the extension here. H5 is the extension for HDF5 files. ################################################# #FOR LOOP songCount = 0 for root, dirs, files in os.walk(basedir): files = glob.glob(os.path.join(root, '*' + ext)) for f in files: print(f) songH5File = hdf5_getters.open_h5_file_read(f) values = [ songCount, hdf5_getters.get_artist_familiarity(songH5File), hdf5_getters.get_artist_hotttnesss(songH5File), hdf5_getters.get_artist_id(songH5File), hdf5_getters.get_artist_mbid(songH5File), hdf5_getters.get_artist_playmeid(songH5File), hdf5_getters.get_artist_7digitalid(songH5File), hdf5_getters.get_artist_latitude(songH5File), hdf5_getters.get_artist_longitude(songH5File), hdf5_getters.get_artist_location(songH5File), hdf5_getters.get_artist_name(songH5File), hdf5_getters.get_release(songH5File), hdf5_getters.get_release_7digitalid(songH5File), hdf5_getters.get_song_id(songH5File), hdf5_getters.get_song_hotttnesss(songH5File), hdf5_getters.get_title(songH5File), hdf5_getters.get_track_7digitalid(songH5File), hdf5_getters.get_analysis_sample_rate(songH5File), hdf5_getters.get_audio_md5(songH5File), hdf5_getters.get_danceability(songH5File), hdf5_getters.get_duration(songH5File), hdf5_getters.get_end_of_fade_in(songH5File), hdf5_getters.get_energy(songH5File), hdf5_getters.get_key(songH5File), hdf5_getters.get_key_confidence(songH5File), hdf5_getters.get_loudness(songH5File), hdf5_getters.get_mode(songH5File), hdf5_getters.get_mode_confidence(songH5File), hdf5_getters.get_start_of_fade_out(songH5File), hdf5_getters.get_tempo(songH5File), hdf5_getters.get_time_signature(songH5File), hdf5_getters.get_time_signature_confidence(songH5File), hdf5_getters.get_track_id(songH5File), hdf5_getters.get_year(songH5File) ] songH5File.close() songCount = songCount + 1 writer.writerow(values) outputFile.close()
title_song = hdf5_getters.get_title(h5) title = title_song.translate(None, string.punctuation) # Get artist location artist_location = hdf5_getters.get_artist_location(h5) artist_loc = artist_location.translate(None, string.punctuation) # Get release release_song = hdf5_getters.get_release(h5) release = release_song.translate(None, string.punctuation) # Get artist HOTTTNESSSSSS hotttness = hdf5_getters.get_artist_hotttnesss(h5) # Get artist familiarity familiarity = hdf5_getters.get_artist_familiarity(h5) # Get danceability danceability = hdf5_getters.get_danceability(h5) # Get duration duration = hdf5_getters.get_duration(h5) # Get energy #*****useless... column is filled with 0's? energy = hdf5_getters.get_energy(h5) # Get loudness loudness = hdf5_getters.get_loudness(h5) # Get year
def data_to_flat_file(basedir,ext='.h5') : """This function extract the information from the tables and creates the flat file.""" count = 0; #song counter list_to_write= [] row_to_write = "" writer = csv.writer(open("metadata_wholeA.csv", "wb")) for root, dirs, files in os.walk(basedir): files = glob.glob(os.path.join(root,'*'+ext)) for f in files: print f #the name of the file h5 = hdf5_getters.open_h5_file_read(f) title = hdf5_getters.get_title(h5) title= title.replace('"','') comma=title.find(',') #eliminating commas in the title if comma != -1: print title time.sleep(1) album = hdf5_getters.get_release(h5) album= album.replace('"','') #eliminating commas in the album comma=album.find(',') if comma != -1: print album time.sleep(1) artist_name = hdf5_getters.get_artist_name(h5) comma=artist_name.find(',') if comma != -1: print artist_name time.sleep(1) artist_name= artist_name.replace('"','') #eliminating double quotes duration = hdf5_getters.get_duration(h5) samp_rt = hdf5_getters.get_analysis_sample_rate(h5) artist_7digitalid = hdf5_getters.get_artist_7digitalid(h5) artist_fam = hdf5_getters.get_artist_familiarity(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(artist_fam) == True: artist_fam=-1 artist_hotness= hdf5_getters.get_artist_hotttnesss(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(artist_hotness) == True: artist_hotness=-1 artist_id = hdf5_getters.get_artist_id(h5) artist_lat = hdf5_getters.get_artist_latitude(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(artist_lat) == True: artist_lat=-1 artist_loc = hdf5_getters.get_artist_location(h5) #checks artist_loc to see if it is a hyperlink if it is set as empty string artist_loc = artist_loc.replace(",", "\,"); if artist_loc.startswith("<a"): artist_loc = "" if len(artist_loc) > 100: artist_loc = "" artist_lon = hdf5_getters.get_artist_longitude(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(artist_lon) == True: artist_lon=-1 artist_mbid = hdf5_getters.get_artist_mbid(h5) artist_pmid = hdf5_getters.get_artist_playmeid(h5) audio_md5 = hdf5_getters.get_audio_md5(h5) danceability = hdf5_getters.get_danceability(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(danceability) == True: danceability=-1 end_fade_in =hdf5_getters.get_end_of_fade_in(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(end_fade_in) == True: end_fade_in=-1 energy = hdf5_getters.get_energy(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(energy) == True: energy=-1 song_key = hdf5_getters.get_key(h5) key_c = hdf5_getters.get_key_confidence(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(key_c) == True: key_c=-1 loudness = hdf5_getters.get_loudness(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(loudness) == True: loudness=-1 mode = hdf5_getters.get_mode(h5) mode_conf = hdf5_getters.get_mode_confidence(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(mode_conf) == True: mode_conf=-1 release_7digitalid = hdf5_getters.get_release_7digitalid(h5) song_hot = hdf5_getters.get_song_hotttnesss(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(song_hot) == True: song_hot=-1 song_id = hdf5_getters.get_song_id(h5) start_fade_out = hdf5_getters.get_start_of_fade_out(h5) tempo = hdf5_getters.get_tempo(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(tempo) == True: tempo=-1 time_sig = hdf5_getters.get_time_signature(h5) time_sig_c = hdf5_getters.get_time_signature_confidence(h5) #checking if we get a "nan" if we do we change it to -1 if numpy.isnan(time_sig_c) == True: time_sig_c=-1 track_id = hdf5_getters.get_track_id(h5) track_7digitalid = hdf5_getters.get_track_7digitalid(h5) year = hdf5_getters.get_year(h5) bars_c = hdf5_getters.get_bars_confidence(h5) bars_c_avg= get_avg(bars_c) bars_c_max= get_max(bars_c) bars_c_min = get_min(bars_c) bars_c_stddev= get_stddev(bars_c) bars_c_count = get_count(bars_c) bars_c_sum = get_sum(bars_c) bars_start = hdf5_getters.get_bars_start(h5) bars_start_avg = get_avg(bars_start) bars_start_max= get_max(bars_start) bars_start_min = get_min(bars_start) bars_start_stddev= get_stddev(bars_start) bars_start_count = get_count(bars_start) bars_start_sum = get_sum(bars_start) beats_c = hdf5_getters.get_beats_confidence(h5) beats_c_avg= get_avg(beats_c) beats_c_max= get_max(beats_c) beats_c_min = get_min(beats_c) beats_c_stddev= get_stddev(beats_c) beats_c_count = get_count(beats_c) beats_c_sum = get_sum(beats_c) beats_start = hdf5_getters.get_beats_start(h5) beats_start_avg = get_avg(beats_start) beats_start_max= get_max(beats_start) beats_start_min = get_min(beats_start) beats_start_stddev= get_stddev(beats_start) beats_start_count = get_count(beats_start) beats_start_sum = get_sum(beats_start) sec_c = hdf5_getters.get_sections_confidence(h5) sec_c_avg= get_avg(sec_c) sec_c_max= get_max(sec_c) sec_c_min = get_min(sec_c) sec_c_stddev= get_stddev(sec_c) sec_c_count = get_count(sec_c) sec_c_sum = get_sum(sec_c) sec_start = hdf5_getters.get_sections_start(h5) sec_start_avg = get_avg(sec_start) sec_start_max= get_max(sec_start) sec_start_min = get_min(sec_start) sec_start_stddev= get_stddev(sec_start) sec_start_count = get_count(sec_start) sec_start_sum = get_sum(sec_start) seg_c = hdf5_getters.get_segments_confidence(h5) seg_c_avg= get_avg(seg_c) seg_c_max= get_max(seg_c) seg_c_min = get_min(seg_c) seg_c_stddev= get_stddev(seg_c) seg_c_count = get_count(seg_c) seg_c_sum = get_sum(seg_c) seg_loud_max = hdf5_getters.get_segments_loudness_max(h5) seg_loud_max_avg= get_avg(seg_loud_max) seg_loud_max_max= get_max(seg_loud_max) seg_loud_max_min = get_min(seg_loud_max) seg_loud_max_stddev= get_stddev(seg_loud_max) seg_loud_max_count = get_count(seg_loud_max) seg_loud_max_sum = get_sum(seg_loud_max) seg_loud_max_time = hdf5_getters.get_segments_loudness_max_time(h5) seg_loud_max_time_avg= get_avg(seg_loud_max_time) seg_loud_max_time_max= get_max(seg_loud_max_time) seg_loud_max_time_min = get_min(seg_loud_max_time) seg_loud_max_time_stddev= get_stddev(seg_loud_max_time) seg_loud_max_time_count = get_count(seg_loud_max_time) seg_loud_max_time_sum = get_sum(seg_loud_max_time) seg_loud_start = hdf5_getters.get_segments_loudness_start(h5) seg_loud_start_avg= get_avg(seg_loud_start) seg_loud_start_max= get_max(seg_loud_start) seg_loud_start_min = get_min(seg_loud_start) seg_loud_start_stddev= get_stddev(seg_loud_start) seg_loud_start_count = get_count(seg_loud_start) seg_loud_start_sum = get_sum(seg_loud_start) seg_pitch = hdf5_getters.get_segments_pitches(h5) pitch_size = len(seg_pitch) seg_start = hdf5_getters.get_segments_start(h5) seg_start_avg= get_avg(seg_start) seg_start_max= get_max(seg_start) seg_start_min = get_min(seg_start) seg_start_stddev= get_stddev(seg_start) seg_start_count = get_count(seg_start) seg_start_sum = get_sum(seg_start) seg_timbre = hdf5_getters.get_segments_timbre(h5) tatms_c = hdf5_getters.get_tatums_confidence(h5) tatms_c_avg= get_avg(tatms_c) tatms_c_max= get_max(tatms_c) tatms_c_min = get_min(tatms_c) tatms_c_stddev= get_stddev(tatms_c) tatms_c_count = get_count(tatms_c) tatms_c_sum = get_sum(tatms_c) tatms_start = hdf5_getters.get_tatums_start(h5) tatms_start_avg= get_avg(tatms_start) tatms_start_max= get_max(tatms_start) tatms_start_min = get_min(tatms_start) tatms_start_stddev= get_stddev(tatms_start) tatms_start_count = get_count(tatms_start) tatms_start_sum = get_sum(tatms_start) #Getting the genres genre_set = 0 #flag to see if the genre has been set or not art_trm = hdf5_getters.get_artist_terms(h5) trm_freq = hdf5_getters.get_artist_terms_freq(h5) trn_wght = hdf5_getters.get_artist_terms_weight(h5) a_mb_tags = hdf5_getters.get_artist_mbtags(h5) genre_indexes=get_genre_indexes(trm_freq) #index of the highest freq final_genre=[] genres_so_far=[] for i in range(len(genre_indexes)): genre_tmp=get_genre(art_trm,genre_indexes[i]) #genre that corresponds to the highest freq genres_so_far=genre_dict.get_genre_in_dict(genre_tmp) #getting the genre from the dictionary if len(genres_so_far) != 0: for i in genres_so_far: final_genre.append(i) genre_set=1 #genre was found in dictionary if genre_set == 1: col_num=[] for genre in final_genre: column=int(genre) #getting the column number of the genre col_num.append(column) genre_array=genre_columns(col_num) #genre array else: genre_array=genre_columns(-1) #the genre was not found in the dictionary transpose_pitch= seg_pitch.transpose() #this is to tranpose the matrix,so we can have 12 rows #arrays containing the aggregate values of the 12 rows seg_pitch_avg=[] seg_pitch_max=[] seg_pitch_min=[] seg_pitch_stddev=[] seg_pitch_count=[] seg_pitch_sum=[] i=0 #Getting the aggregate values in the pitches array for row in transpose_pitch: seg_pitch_avg.append(get_avg(row)) seg_pitch_max.append(get_max(row)) seg_pitch_min.append(get_min(row)) seg_pitch_stddev.append(get_stddev(row)) seg_pitch_count.append(get_count(row)) seg_pitch_sum.append(get_sum(row)) i=i+1 #extracting information from the timbre array transpose_timbre = seg_pitch.transpose() #tranposing matrix, to have 12 rows #arrays containing the aggregate values of the 12 rows seg_timbre_avg=[] seg_timbre_max=[] seg_timbre_min=[] seg_timbre_stddev=[] seg_timbre_count=[] seg_timbre_sum=[] i=0 for row in transpose_timbre: seg_timbre_avg.append(get_avg(row)) seg_timbre_max.append(get_max(row)) seg_timbre_min.append(get_min(row)) seg_timbre_stddev.append(get_stddev(row)) seg_timbre_count.append(get_count(row)) seg_timbre_sum.append(get_sum(row)) i=i+1 #Writing to the flat file writer.writerow([title,album,artist_name,year,duration,seg_start_count, tempo]) h5.close() count=count+1; print count;
def main(): dataset_dir = sys.argv[1] global feat Create_BoW(dataset_dir) Size_BoW = Index_BoW(Bag_Words) count = Frequency(Size_BoW, dataset_dir) Size_BoW = Prune(count) Lablify() print "Forming Dataset..." listing1 = os.listdir(dataset_dir) for a in listing1: listing2 = os.listdir(dataset_dir+a+'/') for b in listing2: listing3 = os.listdir(dataset_dir+a+'/'+b+'/') for c in listing3: listing4 = os.listdir(dataset_dir+a+'/'+b+'/'+c+'/') for d in listing4: h5 = hdf5_getters.open_h5_file_read(dataset_dir+a+'/'+b+'/'+c+'/'+d) feat = [] temp = hdf5_getters.get_artist_hotttnesss(h5) if (math.isnan(temp) or temp==0.0): h5.close() continue feat.append(temp) temp = hdf5_getters.get_artist_familiarity(h5) if (math.isnan(temp) or temp==0.0): h5.close() continue feat.append(temp) temp = hdf5_getters.get_bars_confidence(h5) if temp.size == 0: h5.close() continue MeanVar(temp) temp = hdf5_getters.get_beats_confidence(h5) if temp.size == 0: h5.close() continue mm = np.mean(temp) vv = np.var(temp) if mm==0.0 and vv==0.0: h5.close() continue feat.append(mm) feat.append(vv) feat.append(hdf5_getters.get_duration(h5)) temp = hdf5_getters.get_end_of_fade_in(h5) if (math.isnan(temp)): h5.close() continue feat.append(temp) feat.append(hdf5_getters.get_key(h5)) temp = hdf5_getters.get_key_confidence(h5) if (math.isnan(temp)): h5.close() continue feat.append(temp) temp = hdf5_getters.get_loudness(h5) if (math.isnan(temp)): h5.close() continue feat.append(temp) feat.append(hdf5_getters.get_mode(h5)) temp = hdf5_getters.get_mode_confidence(h5) if (math.isnan(temp)): h5.close() continue feat.append(temp) temp = hdf5_getters.get_sections_confidence(h5) if temp.size == 0: h5.close() continue MeanVar(temp) temp = hdf5_getters.get_segments_confidence(h5) if temp.size == 0: h5.close() continue MeanVar(temp) temp = hdf5_getters.get_segments_loudness_max(h5) if temp.size == 0: h5.close() continue MeanVar(temp) temp = hdf5_getters.get_segments_loudness_max_time(h5) if temp.size == 0: h5.close() continue MeanVar(temp) temp = hdf5_getters.get_segments_pitches(h5) if temp.size == 0: h5.close() continue MeanVar(temp) temp = hdf5_getters.get_segments_timbre(h5) if temp.size == 0: h5.close() continue MeanVar(temp) temp = hdf5_getters.get_start_of_fade_out(h5) if (math.isnan(temp)): h5.close() continue feat.append(temp) temp = hdf5_getters.get_tatums_confidence(h5) if temp.size == 0: h5.close() continue MeanVar(temp) temp = hdf5_getters.get_tempo(h5) if (math.isnan(temp)): h5.close() continue feat.append(temp) feat.append(hdf5_getters.get_time_signature(h5)) temp = hdf5_getters.get_time_signature_confidence(h5) if (math.isnan(temp)): h5.close() continue feat.append(temp) temp = hdf5_getters.get_year(h5) if temp == 0: h5.close() continue feat.append(temp) temp = hdf5_getters.get_artist_terms(h5) if temp.size == 0: h5.close() continue temp_ = hdf5_getters.get_artist_terms_weight(h5) if temp_.size == 0: continue for j in Final_BoW: if j in temp: x = np.where(temp==j) x = x[0][0] feat.append(temp_[x]) else: x = 0.0 feat.append(x) temp = hdf5_getters.get_song_hotttnesss(h5) if (math.isnan(temp) or temp==0.0): h5.close() continue hott = 0 if temp >=0.75: hott = 1 elif temp >=0.40 and temp <0.75: hott = 2 else: hott = 3 feat.append(hott) h5.close() count = 1 f=open('MSD_DATASET.txt', 'a') outstring='' cnt = 0 feat_size = len(feat) for i in feat: cnt+=1 outstring+=str(i) if (cnt!=feat_size): outstring+=',' outstring+='\n' f.write(outstring) f.close()
duration=[] artist_familiarity=[] artist_hotttnesss=[] tempo=[] loudness=[] key=[] time_signature=[] end_of_fade_in=[] mode=[] start_of_fade_out=[] song_hotttnesss=[] for i in range(0,len(file)): h5 = yay.open_h5_file_read('F:\sem4\ml\project\MillionSongSubset\data\A\{}'.format(file[i])) duration.append(yay.get_duration(h5)) artist_familiarity.append(yay.get_artist_familiarity(h5)) artist_hotttnesss.append(yay.get_artist_hotttnesss(h5)) tempo.append(yay.get_tempo(h5)) loudness.append(yay.get_loudness(h5)) key.append(yay.get_key(h5)) time_signature.append(yay.get_time_signature(h5)) end_of_fade_in.append(yay.get_end_of_fade_in(h5)) mode.append(yay.get_mode(h5)) start_of_fade_out.append(yay.get_start_of_fade_out(h5)) song_hotttnesss.append(yay.get_song_hotttnesss(h5)) rows = zip(duration,artist_familiarity,artist_hotttnesss,tempo,loudness,key,time_signature, end_of_fade_in,mode,start_of_fade_out,song_hotttnesss) import csv
def complete_hd5_to_csv(basedir): ext = '.h5' # Get all files with extension .h5 # Header title. Essentially it is a schema for all the following songs header = [ 'Title', 'Artist familiarity', 'Artist hotness', 'Artist ID', 'Artist mbID', 'Artist playmeid', 'Artist 7DigitalID', 'Artist latitude', 'Artist longitude', 'Artist location', 'Artist Name', 'Release', 'Release 7DigitalID', 'Song ID', 'Song Hotness', 'Track 7Digital', 'Analysis sample rate', 'Audio md5', 'Danceability', 'Duration', 'End of Fade', 'Energy', 'Key', 'Key Confidence', 'Loudness', 'Mode', 'Mode Confidence', 'Start of fade out', 'Tempo', 'Time signature', 'Time signature confidence', 'Track ID', 'Year' ] with open('Tester2.csv', 'w', newline='') as csvfile: csv_writer = csv.writer(csvfile, delimiter=';') # writing the header line. This line contains the schema of the data csv_writer.writerow(header) # Read all files from the given directories for root, dirs, files in os.walk(basedir): files = glob.glob(os.path.join(root, '*' + ext)) print(files) for f in files: h5 = hdf5_getters.open_h5_file_read(f) # Write as row all elements. NOTE: Only the serialized elements are parsed and not arrays csv_writer.writerow([ hdf5_getters.get_title(h5), hdf5_getters.get_artist_familiarity(h5), hdf5_getters.get_artist_hotttnesss(h5), hdf5_getters.get_artist_id(h5), hdf5_getters.get_artist_mbid(h5), hdf5_getters.get_artist_playmeid(h5), hdf5_getters.get_artist_7digitalid(h5), hdf5_getters.get_artist_latitude(h5), hdf5_getters.get_artist_longitude(h5), hdf5_getters.get_artist_location(h5), hdf5_getters.get_artist_name(h5), hdf5_getters.get_release(h5), hdf5_getters.get_release_7digitalid(h5), hdf5_getters.get_song_id(h5), hdf5_getters.get_song_hotttnesss(h5), hdf5_getters.get_track_7digitalid(h5), hdf5_getters.get_analysis_sample_rate(h5), hdf5_getters.get_audio_md5(h5), hdf5_getters.get_danceability(h5), hdf5_getters.get_duration(h5), hdf5_getters.get_end_of_fade_in(h5), hdf5_getters.get_energy(h5), hdf5_getters.get_key(h5), hdf5_getters.get_key_confidence(h5), hdf5_getters.get_loudness(h5), hdf5_getters.get_mode(h5), hdf5_getters.get_mode_confidence(h5), hdf5_getters.get_start_of_fade_out(h5), hdf5_getters.get_tempo(h5), hdf5_getters.get_time_signature(h5), hdf5_getters.get_time_signature_confidence(h5), hdf5_getters.get_track_id(h5), hdf5_getters.get_year(h5) ]) # For debugging purposes. Everything as expected # print() # print("Num of songs -- ", hdf5_getters.get_num_songs(h5)) # One song per file # print("Title -- ", hdf5_getters.get_title(h5)) # Print the title of a specific h5 file # print("Artist familiarity -- ", hdf5_getters.get_artist_familiarity(h5)) # print("Artist hotness -- ", hdf5_getters.get_artist_hotttnesss(h5)) # print("Artist ID -- ", hdf5_getters.get_artist_id(h5)) # print("Artist mbID -- ", hdf5_getters.get_artist_mbid(h5)) # print("Artist playmeid -- ", hdf5_getters.get_artist_playmeid(h5)) # print("Artist 7DigitalID -- ", hdf5_getters.get_artist_7digitalid(h5)) # print("Artist latitude -- ", hdf5_getters.get_artist_latitude(h5)) # print("Artist longitude -- ", hdf5_getters.get_artist_longitude(h5)) # print("Artist location -- ", hdf5_getters.get_artist_location(h5)) # print("Artist Name -- ", hdf5_getters.get_artist_name(h5)) # print("Release -- ", hdf5_getters.get_release(h5)) # print("Release 7DigitalID -- ", hdf5_getters.get_release_7digitalid(h5)) # print("Song ID -- ", hdf5_getters.get_song_id(h5)) # print("Song Hotness -- ", hdf5_getters.get_song_hotttnesss(h5)) # print("Track 7Digital -- ", hdf5_getters.get_track_7digitalid(h5)) # print("Analysis sample rate -- ", hdf5_getters.get_analysis_sample_rate(h5)) # print("Audio md5 -- ", hdf5_getters.get_audio_md5(h5)) # print("Danceability -- ", hdf5_getters.get_danceability(h5)) # print("Duration -- ", hdf5_getters.get_duration(h5)) # print("End of Fade -- ", hdf5_getters.get_end_of_fade_in(h5)) # print("Energy -- ", hdf5_getters.get_energy(h5)) # print("Key -- ", hdf5_getters.get_key(h5)) # print("Key Confidence -- ", hdf5_getters.get_key_confidence(h5)) # print("Loudness -- ", hdf5_getters.get_loudness(h5)) # print("Mode -- ", hdf5_getters.get_mode(h5)) # print("Mode Confidence -- ", hdf5_getters.get_mode_confidence(h5)) # print("Start of fade out -- ", hdf5_getters.get_start_of_fade_out(h5)) # print("Tempo -- ", hdf5_getters.get_tempo(h5)) # print("Time signature -- ", hdf5_getters.get_time_signature(h5)) # print("Time signature confidence -- ", hdf5_getters.get_time_signature_confidence(h5)) # print("Track ID -- ", hdf5_getters.get_track_id(h5)) # # print("Artist mbtags -- ", hdf5_getters.get_artist_mbtags(h5)) # # print("Artist mbtags count -- ", hdf5_getters.get_artist_mbtags_count(h5)) # print("Year -- ", hdf5_getters.get_year(h5)) h5.close()
def writeSingleHDF5FileToTxtFile(songHDF5FileName): global maximumArtistNameLen global maximumArtistTagLen global maximumSongNameLen global maximumAlbumNameLen """ This function does 3 simple things: - open the song file - get artist ID and put it - close the file """ songHDF5File = GETTERS.open_h5_file_read(songHDF5FileName) songID = GETTERS.get_song_id(songHDF5File) songName = GETTERS.get_title(songHDF5File) artistID = GETTERS.get_artist_id(songHDF5File) songAlbum = GETTERS.get_release(songHDF5File) songYear = GETTERS.get_year(songHDF5File) songTempo = GETTERS.get_tempo(songHDF5File) songDanceability = GETTERS.get_danceability(songHDF5File) songDuration = GETTERS.get_duration(songHDF5File) songEnergy = GETTERS.get_energy(songHDF5File) songKey = GETTERS.get_key(songHDF5File) songLoudness = GETTERS.get_loudness(songHDF5File) songMode = GETTERS.get_mode(songHDF5File) songTimeSignature = GETTERS.get_time_signature(songHDF5File) songsTableFile.write(songID + "\t" + songName + "\t" + artistID + "\t" + songAlbum + "\t" + str(songYear) + "\t" + str(songTempo) + "\t" + str(songDanceability) + "\t" + str(songDuration) + "\t" + str(songEnergy) + "\t" + str(songKey) + "\t" + str(songLoudness) + "\t" + str(songMode) + "\t" + str(songTimeSignature) + "\t\n") artistName = GETTERS.get_artist_name(songHDF5File) artistFamiliarity = GETTERS.get_artist_familiarity(songHDF5File) artistTagsArray = GETTERS.get_artist_mbtags(songHDF5File) artistsTableFile.write(artistID + "\t" + artistName + "\t" + str(artistFamiliarity) + "\t\n") if len(songName) > maximumSongNameLen: maximumSongNameLen = len(songName) if len(songAlbum) > maximumAlbumNameLen: maximumAlbumNameLen = len(songAlbum) if len(artistName) > maximumArtistNameLen: maximumArtistNameLen = len(artistName) for artistTag in artistTagsArray: if artistTag in allowedTagsSet: artistsTagsTableFile.write(artistID + "\t" + artistTag + "\t\n") if artistTag not in tagsSet: tagsTableFile.write(artistTag + "\t\n") tagsSet.add(artistTag) if len(artistTag) > maximumArtistTagLen: maximumArtistTagLen = len(artistTag) similarArtists = GETTERS.get_similar_artists(songHDF5File) for similarArtist in similarArtists: similarArtistsPairsList.add((artistID, similarArtist)) artistsIDsSet.add(artistID) artistsNamesSet.add(artistName) songHDF5File.close()
def parse_aggregate_songs(file_name,file_name2,artist_map): """ Given an aggregate filename and artist_map in the format {artist_name: {data pertaining to artist}} """ """ TODO: -this function goes through each song, if artist not in there, add all data necesary and add first song info. else update any specific song info -song info is a map from attributename:[values] """ #artist_map = {} h5 = hdf5_getters.open_h5_file_read(file_name) numSongs = hdf5_getters.get_num_songs(h5) print 'Parsing song file...' for i in range(numSongs): artist_name = hdf5_getters.get_artist_name(h5,i) #Filter location longi = hdf5_getters.get_artist_longitude(h5,i) lat = hdf5_getters.get_artist_latitude(h5,i) loc = hdf5_getters.get_artist_location(h5,i) if math.isnan(lat) or math.isnan(longi): #skip if no location continue #filter year yr = hdf5_getters.get_year(h5,i) if yr == 0: #skip if no year continue #filter hotttness and familiarity familiarity = hdf5_getters.get_artist_familiarity(h5,i) hotttness = hdf5_getters.get_artist_hotttnesss(h5,i) if familiarity<=0.0 or hotttness<=0.0: #skip if no hotttness or familiarity computations continue #TODO:MAYBE filter on dance and energy timbre = hdf5_getters.get_segments_timbre(h5,i) #timbre[#] gives len 12 array so for each arr in timbre, add up to get segment and add to corresponding 12 features and avg across each if not artist_name in artist_map: #have not encountered the artist yet, so populate new map sub_map = {} sub_map['artist_familiarity'] = familiarity sub_map['artist_hotttnesss'] = hotttness sub_map['artist_id'] = hdf5_getters.get_artist_id(h5,i) #longi = hdf5_getters.get_artist_longitude(h5,i) #lat = hdf5_getters.get_artist_latitude(h5,i) #longi = None if math.isnan(longi) else longi #lat = None if math.isnan(lat) else lat sub_map['artist_latitude'] = lat sub_map['artist_longitude'] = longi sub_map['artist_location'] = loc sub_map['artist_terms'] = hdf5_getters.get_artist_terms(h5,i) #TODO:see if should weight by freq or weight for if the term matches one of the feature terms sub_map['artist_terms_freq'] = list(hdf5_getters.get_artist_terms_freq(h5,i)) sub_map['artist_terms_weight'] = list(hdf5_getters.get_artist_terms_weight(h5,i)) #song-sepcific data #TODO COMPUTE AN AVG TIMBRE FOR A SONG BY IDEA: #SUMMING DOWN EACH 12 VECTOR FOR EACH PT IN SONG AND AVG THIS ACROSS SONG dance = hdf5_getters.get_danceability(h5,i) dance = None if dance == 0.0 else dance energy = hdf5_getters.get_energy(h5,i) energy = None if energy == 0.0 else energy sub_map['danceability'] = [dance] sub_map['duration'] = [hdf5_getters.get_duration(h5,i)] sub_map['end_of_fade_in'] = [hdf5_getters.get_end_of_fade_in(h5,i)] sub_map['energy'] = [energy] #since each song has a key, ask if feature for keys should be num of songs that appear in that key or #just binary if any of their songs has that key or just be avg of songs with that key #same for mode, since its either major or minor...should it be count or avg.? sub_map['key'] = [hdf5_getters.get_key(h5,i)] sub_map['loudness'] = [hdf5_getters.get_loudness(h5,i)] sub_map['mode'] = [hdf5_getters.get_mode(h5,i)] #major or minor 0/1 s_hot = hdf5_getters.get_song_hotttnesss(h5,i) s_hot = None if math.isnan(s_hot) else s_hot sub_map['song_hotttnesss'] = [s_hot] sub_map['start_of_fade_out'] = [hdf5_getters.get_start_of_fade_out(h5,i)] sub_map['tempo'] = [hdf5_getters.get_tempo(h5,i)] #should time signature be count as well? binary? sub_map['time_signature'] = [hdf5_getters.get_time_signature(h5,i)] sub_map['track_id'] = [hdf5_getters.get_track_id(h5,i)] #should year be binary since they can have many songs across years and should it be year:count sub_map['year'] = [yr] artist_map[artist_name] = sub_map else: #artist already exists, so get its map and update song fields dance = hdf5_getters.get_danceability(h5,i) dance = None if dance == 0.0 else dance energy = hdf5_getters.get_energy(h5,i) energy = None if energy == 0.0 else energy artist_map[artist_name]['danceability'].append(dance) artist_map[artist_name]['duration'].append(hdf5_getters.get_duration(h5,i)) artist_map[artist_name]['end_of_fade_in'].append(hdf5_getters.get_end_of_fade_in(h5,i)) artist_map[artist_name]['energy'].append(energy) artist_map[artist_name]['key'].append(hdf5_getters.get_key(h5,i)) artist_map[artist_name]['loudness'].append(hdf5_getters.get_loudness(h5,i)) artist_map[artist_name]['mode'].append(hdf5_getters.get_mode(h5,i)) #major or minor 0/1 s_hot = hdf5_getters.get_song_hotttnesss(h5,i) s_hot = None if math.isnan(s_hot) else s_hot artist_map[artist_name]['song_hotttnesss'].append(s_hot) artist_map[artist_name]['start_of_fade_out'].append(hdf5_getters.get_start_of_fade_out(h5,i)) artist_map[artist_name]['tempo'].append(hdf5_getters.get_tempo(h5,i)) #should time signature be count as well? binary? artist_map[artist_name]['time_signature'].append(hdf5_getters.get_time_signature(h5,i)) artist_map[artist_name]['track_id'].append(hdf5_getters.get_track_id(h5,i)) #should year be binary since they can have many songs across years and should it be year:count artist_map[artist_name]['year'].append(yr) h5 = hdf5_getters.open_h5_file_read(file_name2) numSongs = hdf5_getters.get_num_songs(h5) print 'Parsing song file2...' for i in range(numSongs): song_id = hdf5_getters.get_track_id(h5,i) artist_name = hdf5_getters.get_artist_name(h5,i) if artist_name in artist_map and song_id in artist_map[artist_name]['track_id']: continue #Filter location longi = hdf5_getters.get_artist_longitude(h5,i) lat = hdf5_getters.get_artist_latitude(h5,i) loc = hdf5_getters.get_artist_location(h5,i) if math.isnan(lat) or math.isnan(longi): #skip if no location continue #filter year yr = hdf5_getters.get_year(h5,i) if yr == 0: #skip if no year continue #filter hotttness and familiarity familiarity = hdf5_getters.get_artist_familiarity(h5,i) hotttness = hdf5_getters.get_artist_hotttnesss(h5,i) if familiarity<=0.0 or hotttness<=0.0: #skip if no hotttness or familiarity computations continue #TODO:MAYBE filter on dance and energy timbre = hdf5_getters.get_segments_timbre(h5,i) #timbre[#] gives len 12 array so for each arr in timbre, add up to get segment and add to corresponding 12 features and avg across each if not artist_name in artist_map: #have not encountered the artist yet, so populate new map sub_map = {} sub_map['artist_familiarity'] = familiarity sub_map['artist_hotttnesss'] = hotttness sub_map['artist_id'] = hdf5_getters.get_artist_id(h5,i) #longi = hdf5_getters.get_artist_longitude(h5,i) #lat = hdf5_getters.get_artist_latitude(h5,i) #longi = None if math.isnan(longi) else longi #lat = None if math.isnan(lat) else lat sub_map['artist_latitude'] = lat sub_map['artist_longitude'] = longi sub_map['artist_location'] = loc sub_map['artist_terms'] = hdf5_getters.get_artist_terms(h5,i) #TODO:see if should weight by freq or weight for if the term matches one of the feature terms sub_map['artist_terms_freq'] = list(hdf5_getters.get_artist_terms_freq(h5,i)) sub_map['artist_terms_weight'] = list(hdf5_getters.get_artist_terms_weight(h5,i)) #song-sepcific data #TODO COMPUTE AN AVG TIMBRE FOR A SONG BY IDEA: #SUMMING DOWN EACH 12 VECTOR FOR EACH PT IN SONG AND AVG THIS ACROSS SONG dance = hdf5_getters.get_danceability(h5,i) dance = None if dance == 0.0 else dance energy = hdf5_getters.get_energy(h5,i) energy = None if energy == 0.0 else energy sub_map['danceability'] = [dance] sub_map['duration'] = [hdf5_getters.get_duration(h5,i)] sub_map['end_of_fade_in'] = [hdf5_getters.get_end_of_fade_in(h5,i)] sub_map['energy'] = [energy] #since each song has a key, ask if feature for keys should be num of songs that appear in that key or #just binary if any of their songs has that key or just be avg of songs with that key #same for mode, since its either major or minor...should it be count or avg.? sub_map['key'] = [hdf5_getters.get_key(h5,i)] sub_map['loudness'] = [hdf5_getters.get_loudness(h5,i)] sub_map['mode'] = [hdf5_getters.get_mode(h5,i)] #major or minor 0/1 s_hot = hdf5_getters.get_song_hotttnesss(h5,i) s_hot = None if math.isnan(s_hot) else s_hot sub_map['song_hotttnesss'] = [s_hot] sub_map['start_of_fade_out'] = [hdf5_getters.get_start_of_fade_out(h5,i)] sub_map['tempo'] = [hdf5_getters.get_tempo(h5,i)] #should time signature be count as well? binary? sub_map['time_signature'] = [hdf5_getters.get_time_signature(h5,i)] sub_map['track_id'] = [hdf5_getters.get_track_id(h5,i)] #should year be binary since they can have many songs across years and should it be year:count sub_map['year'] = [yr] artist_map[artist_name] = sub_map else: #artist already exists, so get its map and update song fields dance = hdf5_getters.get_danceability(h5,i) dance = None if dance == 0.0 else dance energy = hdf5_getters.get_energy(h5,i) energy = None if energy == 0.0 else energy artist_map[artist_name]['danceability'].append(dance) artist_map[artist_name]['duration'].append(hdf5_getters.get_duration(h5,i)) artist_map[artist_name]['end_of_fade_in'].append(hdf5_getters.get_end_of_fade_in(h5,i)) artist_map[artist_name]['energy'].append(energy) artist_map[artist_name]['key'].append(hdf5_getters.get_key(h5,i)) artist_map[artist_name]['loudness'].append(hdf5_getters.get_loudness(h5,i)) artist_map[artist_name]['mode'].append(hdf5_getters.get_mode(h5,i)) #major or minor 0/1 s_hot = hdf5_getters.get_song_hotttnesss(h5,i) s_hot = None if math.isnan(s_hot) else s_hot artist_map[artist_name]['song_hotttnesss'].append(s_hot) artist_map[artist_name]['start_of_fade_out'].append(hdf5_getters.get_start_of_fade_out(h5,i)) artist_map[artist_name]['tempo'].append(hdf5_getters.get_tempo(h5,i)) #should time signature be count as well? binary? artist_map[artist_name]['time_signature'].append(hdf5_getters.get_time_signature(h5,i)) artist_map[artist_name]['track_id'].append(hdf5_getters.get_track_id(h5,i)) #should year be binary since they can have many songs across years and should it be year:count artist_map[artist_name]['year'].append(yr)
def get_fields(files): tracks = [] counts = {} field_counts = [] for file in files: h5 = hdf5_getters.open_h5_file_read(file) t = {} t['artist_familiarity'] = hdf5_getters.get_artist_familiarity( h5) # estimation t['artist_hotttnesss'] = hdf5_getters.get_artist_hotttnesss( h5) # estimation t['artist_name'] = hdf5_getters.get_artist_name(h5) # artist name t['release'] = hdf5_getters.get_release(h5) # album name t['title'] = hdf5_getters.get_title(h5) # title t['len_similar_artists'] = len( hdf5_getters.get_similar_artists(h5)) # number of similar artists t['analysis_sample_rate'] = hdf5_getters.get_analysis_sample_rate( h5) # sample rate of the audio used ????????? t['duration'] = hdf5_getters.get_duration(h5) # seconds t['key'] = hdf5_getters.get_key(h5) # key the song is in t['key_confidence'] = hdf5_getters.get_key_confidence( h5) # confidence measure t['loudness'] = hdf5_getters.get_loudness(h5) # overall loudness in dB t['mode_confidence'] = hdf5_getters.get_mode_confidence( h5) # confidence measure t['start_of_fade_out'] = hdf5_getters.get_start_of_fade_out( h5) # time in sec t['tempo'] = hdf5_getters.get_tempo(h5) # estimated tempo in BPM t['time_signature'] = hdf5_getters.get_time_signature( h5) # estimate of number of beats per bar, e.g. 4 t['year'] = hdf5_getters.get_year( h5) # song release year from MusicBrainz or 0 timbre = hdf5_getters.get_segments_timbre( h5) # 2D float array, texture features (MFCC+PCA-like) t['segments_timbre'] = timbre t['timbre_avg'] = timbre.mean(axis=0) # list of 12 averages cov_mat_timbre = np.cov(timbre, rowvar=False) cov_timbre = [] for i in range(len(cov_mat_timbre)): for j in range(len(cov_mat_timbre) - i): cov_timbre.append(cov_mat_timbre[i][j]) t['timbre_cov'] = cov_timbre # list of 78 covariances pitch = hdf5_getters.get_segments_pitches( h5) # 2D float array, chroma feature, one value per note t['segments_pitch'] = pitch t['pitch_avg'] = pitch.mean(axis=0) # list of 12 averages cov_mat_pitch = np.cov(pitch, rowvar=False) cov_pitch = [] for i in range(len(cov_mat_pitch)): for j in range(len(cov_mat_pitch) - i): cov_pitch.append(cov_mat_timbre[i][j]) t['pitch_cov'] = cov_pitch # list of 78 covariances # seg_pitch = hdf5_getters.get_segments_pitches(h5) # 2D float array, chroma feature, one value per note # print(seg_pitch.shape) # t['artist_latitude'] = hdf5_getters.get_artist_latitude(h5) # float, ???????????????????????????????????????? # t['artist_longitude'] = hdf5_getters.get_artist_longitude(h5) # float, ?????????????????????????????????????? # t['artist_location'] = hdf5_getters.get_artist_location(h5) # location name # t['song_hotttnesss'] = hdf5_getters.get_song_hotttnesss(h5) # estimation # t['danceability'] = hdf5_getters.get_danceability(h5) # estimation # t['end_of_fade_in'] = hdf5_getters.get_end_of_fade_in(h5) # seconds at the beginning of the song # t['energy'] = hdf5_getters.get_energy(h5) # energy from listener point of view # t['mode'] = hdf5_getters.get_mode(h5) # major or minor # t['time_signature_confidence'] = hdf5_getters.get_time_signature_confidence(h5) # confidence measure # t['artist_mbtags_count'] = len(hdf5_getters.get_artist_mbtags_count(h5)) # array int, tag counts for musicbrainz tags # bad types or non arithmatic numbers ''' # t['audio_md5'] = hdf5_getters.get_audio_md5(h5) # hash code of the audio used for the analysis by The Echo Nest # t['artist_terms_weight'] = hdf5_getters.get_artist_terms_weight(h5) # array float, echonest tags weight ????? # t['artist_terms_freq'] = hdf5_getters.get_artist_terms_freq(h5) # array float, echonest tags freqs ?????????? # t['artist_terms'] = hdf5_getters.get_artist_terms(h5) # array string, echonest tags ????????????????????????? # t['artist_id'] = hdf5_getters.get_artist_id(h5) # echonest id # t['artist_mbid'] = hdf5_getters.get_artist_mbid(h5) # musicbrainz id # t['artist_playmeid'] = hdf5_getters.get_artist_playmeid(h5) # playme id # t['artist_7digitalid'] = hdf5_getters.get_artist_7digitalid(h5) # 7digital id # t['release_7digitalid'] = hdf5_getters.get_release_7digitalid(h5) # 7digital id # t['song_id'] = hdf5_getters.get_song_id(h5) # echonest id # t['track_7digitalid'] = hdf5_getters.get_track_7digitalid(h5) # 7digital id # t['similar_artists'] = hdf5_getters.get_similar_artists(h5) # string array of sim artist ids # t['track_id'] = hdf5_getters.get_track_id(h5) # echonest track id # t['segments_start'] = hdf5_getters.get_segments_start(h5) # array floats, musical events, ~ note onsets # t['segments_confidence'] = hdf5_getters.get_segments_confidence(h5) # array floats, confidence measure # t['segments_pitches'] = hdf5_getters.get_segments_pitches(h5) # 2D float array, chroma feature, one value per note # t['segments_timbre'] = hdf5_getters.get_segments_timbre(h5) # 2D float array, texture features (MFCC+PCA-like) # t['segments_loudness_max'] = hdf5_getters.get_segments_loudness_max(h5) # float array, max dB value # t['segments_loudness_max_time'] = hdf5_getters.get_segments_loudness_max_time(h5) # float array, time of max dB value, i.e. end of attack # t['segments_loudness_start'] = hdf5_getters.get_segments_loudness_start(h5) # array float, dB value at onset # t['sections_start'] = hdf5_getters.get_sections_start(h5) # array float, largest grouping in a song, e.g. verse # t['sections_confidence'] = hdf5_getters.get_sections_confidence(h5) # array float, confidence measure # t['beats_start'] = hdf5_getters.get_beats_start(h5) # array float, result of beat tracking # t['beats_confidence'] = hdf5_getters.get_beats_confidence(h5) # array float, confidence measure # t['bars_start'] = hdf5_getters.get_bars_start(h5) # array float, beginning of bars, usually on a beat # t['bars_confidence'] = hdf5_getters.get_bars_confidence(h5) # array float, confidence measure # t['tatums_start'] = hdf5_getters.get_tatums_start(h5) # array float, smallest rythmic element # t['tatums_confidence'] = hdf5_getters.get_tatums_confidence(h5) # array float, confidence measure # t['artist_mbtags'] = hdf5_getters.get_artist_mbtags(h5) # array string, tags from musicbrainz.org ''' h5.close() for key, value in t.items(): if isinstance(value, float) and math.isnan(value): pass if type(value) is np.ndarray: if key in counts.keys(): counts[key] += 1 else: counts[key] = 1 elif value: if key in counts.keys(): counts[key] += 1 else: counts[key] = 1 elif key not in counts.keys(): counts[key] = 0 count = 0 for key, value in t.items(): if isinstance(value, float) and math.isnan(value): pass elif type(value) is np.ndarray: count += 1 elif value: count += 1 field_counts.append(count) # progress bar if num_of_tracks >= 100: i = files.index(file) + 1 scale = num_of_tracks / 100 if i % math.ceil(len(files) * .05) == 0: sys.stdout.write('\r') # the exact output you're looking for: sys.stdout.write("Loading dataframe: [%-100s] %d%%" % ('=' * int(i // scale), 1 / scale * i)) sys.stdout.flush() time.sleep(.01) tracks.append(t) print() return tracks, counts, field_counts
def apply_to_all_files_mod(basedir, song_list, filename='songs.npy', func=lambda x: x, ext='.h5'): """ From a base directory, goes through all subdirectories, finds all files with the given ext, and reads each song from each file. For each song in song_list, gets the title, artist, tempo, familiarity, hottness, terms, dancebility, duration, energy, loudness, and the timbre matrix. Tab delimits terms, flattens the timbre matrix, adds them all to a np array, and saves the array with the information from each song to filename. """ #Initial list of desired song info csv_data = [] count = 0 done_gg = False song_dict = construct_song_dict(song_list) # iterate over all files in all subdirectories for root, dirs, files in os.walk(basedir): files = glob.glob(os.path.join(root, '*' + ext)) #Iterates through each file in files for filename in files: count += 1 if count % 1000 == 0: print count h5 = GETTERS.open_h5_file_read(filename) #Scrapes desired data title = GETTERS.get_title(h5) artist = GETTERS.get_artist_name(h5) tempo = GETTERS.get_tempo(h5) familiarity = GETTERS.get_artist_familiarity(h5) hotness = GETTERS.get_artist_hotttnesss(h5) terms = GETTERS.get_artist_terms(h5) danceability = GETTERS.get_danceability(h5) duration = GETTERS.get_duration(h5) energy = GETTERS.get_energy(h5) loudness = GETTERS.get_loudness(h5) timbre = GETTERS.get_segments_timbre(h5) #Tab delimits terms terms_tabs = "\t".join(terms) #Flattens timbre timbre_flattened = timbre.flatten() #Creates np array of everything but timbre matrix everything_but_timbre = np.array([ title, artist, tempo, familiarity, hotness, terms_tabs, danceability, duration, energy, loudness ]) #Combines everything else with timbre matrix row = np.concatenate((everything_but_timbre, timbre_flattened)) #Checks if artist, song combination was in the list and, if so, adds it. if artist in song_dict: if title in song_dict[artist]: print("Adding {} by {}. Song ID is: {}".format( title, artist, GETTERS.get_song_id(h5))) csv_data.append(row) #Prevents duplicates song_dict[artist][song_dict[artist].index(title)] = '' h5.close() print("Number of songs: {}, artists {}".format(len(csv_data), len(song_dict))) csv_array = np.array(csv_data) #Saves data np.save(filename, csv_array)
def getArtistFamiliarity(h5): #Returns the artist familiarity value return [hdf5_getters.get_artist_familiarity(h5)]
cnt = 0 loops = 0 for alpha in string.ascii_uppercase : for root, dirs, files in os.walk('/mnt/million-songs/data/'+alpha): files = glob.glob(os.path.join(root,'*'+'.h5')) for f in files : h5 = GETTERS.open_h5_file_read(f) num_songs = GETTERS.get_num_songs(h5) print f, num_songs for i in range(num_songs): analysis_sample_rate = GETTERS.get_analysis_sample_rate(h5, i) artist_7digitalid = GETTERS.get_artist_7digitalid(h5, i) artist_familiarity = GETTERS.get_artist_familiarity(h5, i) artist_hotttnesss = GETTERS.get_artist_hotttnesss(h5, i) artist_id = GETTERS.get_artist_id(h5, i) artist_latitude = GETTERS.get_artist_latitude(h5, i) artist_location = GETTERS.get_artist_location(h5, i) artist_longitude = GETTERS.get_artist_longitude(h5, i) artist_mbid = GETTERS.get_artist_mbid(h5, i) artist_mbtags = ','.join(str(e) for e in GETTERS.get_artist_mbtags(h5, i)) # array artist_mbtags_count = ','.join(str(e) for e in GETTERS.get_artist_mbtags_count(h5, i)) # array artist_name = GETTERS.get_artist_name(h5, i) artist_playmeid = GETTERS.get_artist_playmeid(h5, i) artist_terms = ','.join(str(e) for e in GETTERS.get_artist_terms(h5, i)) # array #artist_terms_freq = ','.join(str(e) for e in GETTERS.get_artist_terms_freq(h5, i)) # array #artist_terms_weight = ','.join(str(e) for e in GETTERS.get_artist_terms_weight(h5, i)) # array #audio_md5 = GETTERS.get_audio_md5(h5, i) #bars_confidence = ','.join(str(e) for e in GETTERS.get_bars_confidence(h5, i)) # array
for subdir, dirs, files in os.walk("data/"): for file in files: f = os.path.join(subdir, file) if ".h5" in f: h5 = h.open_h5_file_read(f) print ("----------") ''' Store artist tuples ''' artist_id = h.get_artist_id(h5,0) artist_name = h.get_artist_name(h5,0) artist_name = artist_name.replace("'","") artist_hottness = str(h.get_artist_hotttnesss(h5,0)) print artist_hottness if artist_hottness == "nan": artist_hottness = "0.0" artist_familiarity = str(h.get_artist_familiarity(h5,0)) if artist_familiarity == "nan": artist_familiarity = "0.0" cursor.execute("SELECT * FROM artist WHERE artist_id = '" + artist_id + "'") rs = cursor.fetchall() if cursor.rowcount != 1: cursor.execute("INSERT INTO artist VALUES ('" + artist_id + "','" + artist_name + "'," + artist_hottness + "," + artist_familiarity + ");") ''' Store artist_genres tuples ''' terms = h.get_artist_terms(h5,0) mbtags = h.get_artist_mbtags(h5,0) for term in terms: term = term.replace("'","") cursor.execute("SELECT * FROM artist_genres WHERE artist_id='" + artist_id + "' AND genre ='" + term + "'") if cursor.rowcount != 1:
def fill_attributes(song, songH5File): #----------------------------non array attributes------------------------------- song.analysisSampleRate = str( hdf5_getters.get_analysis_sample_rate(songH5File)) song.artistDigitalID = str(hdf5_getters.get_artist_7digitalid(songH5File)) song.artistFamiliarity = str( hdf5_getters.get_artist_familiarity(songH5File)) song.artistHotness = str(hdf5_getters.get_artist_hottness(songH5File)) song.artistID = str(hdf5_getters.get_artist_id(songH5File)) song.artistLatitude = str(hdf5_getters.get_artist_latitude(songH5File)) song.artistLocation = str(hdf5_getters.get_artist_location(songH5File)) song.artistLongitude = str(hdf5_getters.get_artist_longitude(songH5File)) song.artistmbID = str(hdf5_getters.get_artist_mbid(songH5File)) song.artistName = str(hdf5_getters.get_artist_name(songH5File)) song.artistPlayMeID = str(hdf5_getters.get_artist_playmeid(songH5File)) song.audioMD5 = str(hdf5_getters.get_audio_md5(songH5File)) song.danceability = str(hdf5_getters.get_danceability(songH5File)) song.duration = str(hdf5_getters.get_duration(songH5File)) song.endOfFadeIn = str(hdf5_getters.get_end_of_fade_in(songH5File)) song.energy = str(hdf5_getters.get_energy(songH5File)) song.key = str(hdf5_getters.get_key(songH5File)) song.keyConfidence = str(hdf5_getters.get_key_confidence(songH5File)) song.segementsConfidence = str( hdf5_getters.get_segments_confidence(songH5File)) song.segementsConfidence = str( hdf5_getters.get_sections_confidence(songH5File)) song.loudness = str(hdf5_getters.get_loudness(songH5File)) song.mode = str(hdf5_getters.get_mode(songH5File)) song.modeConfidence = str(hdf5_getters.get_mode_confidence(songH5File)) song.release = str(hdf5_getters.get_release(songH5File)) song.releaseDigitalID = str( hdf5_getters.get_release_7digitalid(songH5File)) song.songHotttnesss = str(hdf5_getters.get_song_hotttnesss(songH5File)) song.startOfFadeOut = str(hdf5_getters.get_start_of_fade_out(songH5File)) song.tempo = str(hdf5_getters.get_tempo(songH5File)) song.timeSignature = str(hdf5_getters.get_time_signature(songH5File)) song.timeSignatureConfidence = str( hdf5_getters.get_time_signature_confidence(songH5File)) song.title = str(hdf5_getters.get_title(songH5File)) song.trackID = str(hdf5_getters.get_track_id(songH5File)) song.trackDigitalID = str(hdf5_getters.get_track_7digitalid(songH5File)) song.year = str(hdf5_getters.get_year(songH5File)) #-------------------------------array attributes-------------------------------------- #array float song.beatsStart_mean, song.beatsStart_var = convert_array_to_meanvar( hdf5_getters.get_beats_start(songH5File)) #array float song.artistTermsFreq_mean, song.artistTermsFreq_var = convert_array_to_meanvar( hdf5_getters.get_artist_terms_freq(songH5File)) #array float song.artistTermsWeight_mean, song.artistTermsWeight_var = convert_array_to_meanvar( hdf5_getters.get_artist_terms_weight(songH5File)) #array int song.artistmbTagsCount_mean, song.artistmbTagsCount_var = convert_array_to_meanvar( hdf5_getters.get_artist_mbtags_count(songH5File)) #array float song.barsConfidence_mean, song.barsConfidence_var = convert_array_to_meanvar( hdf5_getters.get_bars_confidence(songH5File)) #array float song.barsStart_mean, song.barsStart_var = convert_array_to_meanvar( hdf5_getters.get_bars_start(songH5File)) #array float song.beatsConfidence_mean, song.beatsConfidence_var = convert_array_to_meanvar( hdf5_getters.get_beats_confidence(songH5File)) #array float song.sectionsConfidence_mean, song.sectionsConfidence_var = convert_array_to_meanvar( hdf5_getters.get_sections_confidence(songH5File)) #array float song.sectionsStart_mean, song.sectionsStart_var = convert_array_to_meanvar( hdf5_getters.get_sections_start(songH5File)) #array float song.segmentsConfidence_mean, song.segmentsConfidence_var = convert_array_to_meanvar( hdf5_getters.get_segments_confidence(songH5File)) #array float song.segmentsLoudness_mean, song.segmentsLoudness_var = convert_array_to_meanvar( hdf5_getters.get_segments_loudness_max(songH5File)) #array float song.segmentsLoudnessMaxTime_mean, song.segmentsLoudnessMaxTime_var = convert_array_to_meanvar( hdf5_getters.get_segments_loudness_max_time(songH5File)) #array float song.segmentsLoudnessMaxStart_mean, song.segmentsLoudnessMaxStart_var = convert_array_to_meanvar( hdf5_getters.get_segments_loudness_start(songH5File)) #array float song.segmentsStart_mean, song.segmentsStart_var = convert_array_to_meanvar( hdf5_getters.get_segments_start(songH5File)) #array float song.tatumsConfidence_mean, song.tatumsConfidence_var = convert_array_to_meanvar( hdf5_getters.get_tatums_confidence(songH5File)) #array float song.tatumsStart_mean, song.tatumsStart_var = convert_array_to_meanvar( hdf5_getters.get_tatums_start(songH5File)) #array2d float song.segmentsTimbre_mean, song.segmentsTimbre_var = covert_2darray_to_meanvar( hdf5_getters.get_segments_timbre(songH5File)) #array2d float song.segmentsPitches_mean, song.segmentsPitches_var = covert_2darray_to_meanvar( hdf5_getters.get_segments_pitches(songH5File)) #------------------------array string attributes------------------------ song.similarArtists = convert_array_to_string( hdf5_getters.get_similar_artists(songH5File)) #array string song.artistTerms = convert_array_to_string( hdf5_getters.get_artist_terms(songH5File)) #array string song.artistmbTags = convert_array_to_string( hdf5_getters.get_artist_mbtags(songH5File)) #array string return song
def func_to_extract_features(filename): """ This function does 3 simple things: - open the song file - get artist ID and put it - close the file """ global cntnan global cntdanceability global listfeatures global listhotness global listyear global listloudness global listkey global listmode global listduration cf = [] h5 = GETTERS.open_h5_file_read(filename) nanfound = 0 #Get target feature: song hotness #FEATURE 0 song_hotness = GETTERS.get_song_hotttnesss(h5) if math.isnan(song_hotness): nanfound = 1 cntnan = cntnan + 1 else: cf.append(song_hotness) #FEATURE 1 #Get song loudness song_loudness = GETTERS.get_loudness(h5) if math.isnan(song_loudness): nanfound = 1 cntnan = cntnan + 1 else: cf.append(song_loudness) #FEATURE 2 #Get key of the song song_key = GETTERS.get_key(h5) if math.isnan(song_key): nanfound = 1 cntnan = cntnan + 1 else: cf.append(song_key) #FEATURE 3 #Get duration of the song song_duration = GETTERS.get_duration(h5) if math.isnan(song_duration): nanfound = 1 cntnan = cntnan + 1 else: cf.append(song_duration) #FEATURE 4-15 #Get Average Pitch Class across all segments #Get the pitches (12 pitches histogram for each segment) pitches = GETTERS.get_segments_pitches(h5) M = np.mat(pitches) meanpitches = M.mean(axis=0) pitches_arr = np.asarray(meanpitches) pitches_list = [] for i in range(0,12): pitches_list.append(pitches_arr[0][i]) cf.append(pitches_list) #FEATURE 16, 27 #Get Average Timbre Class across all segments timbres = GETTERS.get_segments_timbre(h5) M = np.mat(timbres) meantimbres = M.mean(axis=0) timbre_arr = np.asarray(meantimbres) timbre_list = [] for i in range(0,12): timbre_list.append(timbre_arr[0][i]) cf.append(timbre_list) #FEATURE 28 #Get song year song_year = GETTERS.get_year(h5) if song_year == 0: nanfound = 1 cntnan = cntnan + 1 else: cf.append(song_year) #FEATURE 29 #Get song tempo song_tempo = GETTERS.get_tempo(h5) cf.append(song_tempo) #Feature 30 #Get max loudness for each segment max_loudness_arr = GETTERS.get_segments_loudness_max(h5) start_loudness_arr = GETTERS.get_segments_loudness_start(h5) if nanfound == 0: cf.append(max(max_loudness_arr)-min(start_loudness_arr)) #Feature 31 artist_familiarity = GETTERS.get_artist_familiarity(h5) cf.append(artist_familiarity) #Feature 32 song_title = GETTERS.get_title(h5) cf.append(song_title) #Featture 33 artist_name = GETTERS.get_artist_name(h5) cf.append(artist_name) #Feature 34 #location = GETTERS.get_artist_location(h5) #cf.append(location) #Tags artist_mbtags = GETTERS.get_artist_mbtags(h5) if not artist_mbtags.size: genre = "Unknown" else: artist_mbcount = np.array(GETTERS.get_artist_mbtags_count(h5)) index_max = artist_mbcount.argmax(axis=0) genre = artist_mbtags[index_max] if genre == 'espa\xc3\xb1ol': genre = "Unknown" cf.append(genre) if nanfound == 0: strlist = list_to_csv(cf) listfeatures.append(strlist) mydict.setdefault(artist_name,[]).append(song_hotness) h5.close()
def getInfo(files): data = [] build_str = '' with open(sys.argv[1], 'r') as f: contents = f.read() c = contents.split() f.close() print("creating csv with following fields:" + contents) for i in c: build_str = build_str + i + ',' build_str = build_str[:-1] build_str = build_str + '\n' for fil in files: curFile = getters.open_h5_file_read(fil) d2 = {} get_table = {'track_id': getters.get_track_id(curFile), 'segments_pitches': getters.get_segments_pitches(curFile), 'time_signature_confidence': getters.get_time_signature_confidence(curFile), 'song_hotttnesss': getters.get_song_hotttnesss(curFile), 'artist_longitude': getters.get_artist_longitude(curFile), 'tatums_confidence': getters.get_tatums_confidence(curFile), 'num_songs': getters.get_num_songs(curFile), 'duration': getters.get_duration(curFile), 'start_of_fade_out': getters.get_start_of_fade_out(curFile), 'artist_name': getters.get_artist_name(curFile), 'similar_artists': getters.get_similar_artists(curFile), 'artist_mbtags': getters.get_artist_mbtags(curFile), 'artist_terms_freq': getters.get_artist_terms_freq(curFile), 'release': getters.get_release(curFile), 'song_id': getters.get_song_id(curFile), 'track_7digitalid': getters.get_track_7digitalid(curFile), 'title': getters.get_title(curFile), 'artist_latitude': getters.get_artist_latitude(curFile), 'energy': getters.get_energy(curFile), 'key': getters.get_key(curFile), 'release_7digitalid': getters.get_release_7digitalid(curFile), 'artist_mbid': getters.get_artist_mbid(curFile), 'segments_confidence': getters.get_segments_confidence(curFile), 'artist_hotttnesss': getters.get_artist_hotttnesss(curFile), 'time_signature': getters.get_time_signature(curFile), 'segments_loudness_max_time': getters.get_segments_loudness_max_time(curFile), 'mode': getters.get_mode(curFile), 'segments_loudness_start': getters.get_segments_loudness_start(curFile), 'tempo': getters.get_tempo(curFile), 'key_confidence': getters.get_key_confidence(curFile), 'analysis_sample_rate': getters.get_analysis_sample_rate(curFile), 'bars_confidence': getters.get_bars_confidence(curFile), 'artist_playmeid': getters.get_artist_playmeid(curFile), 'artist_terms_weight': getters.get_artist_terms_weight(curFile), 'segments_start': getters.get_segments_start(curFile), 'artist_location': getters.get_artist_location(curFile), 'loudness': getters.get_loudness(curFile), 'year': getters.get_year(curFile), 'artist_7digitalid': getters.get_artist_7digitalid(curFile), 'audio_md5': getters.get_audio_md5(curFile), 'segments_timbre': getters.get_segments_timbre(curFile), 'mode_confidence': getters.get_mode_confidence(curFile), 'end_of_fade_in': getters.get_end_of_fade_in(curFile), 'danceability': getters.get_danceability(curFile), 'artist_familiarity': getters.get_artist_familiarity(curFile), 'artist_mbtags_count': getters.get_artist_mbtags_count(curFile), 'tatums_start': getters.get_tatums_start(curFile), 'artist_id': getters.get_artist_id(curFile), 'segments_loudness_max': getters.get_segments_loudness_max(curFile), 'bars_start': getters.get_bars_start(curFile), 'beats_start': getters.get_beats_start(curFile), 'artist_terms': getters.get_artist_terms(curFile), 'sections_start': getters.get_sections_start(curFile), 'beats_confidence': getters.get_beats_confidence(curFile), 'sections_confidence': getters.get_sections_confidence(curFile)} tid = fil.split('/')[-1].split('.')[0] # print(c) for i in c: if i in get_table: d2[i] = get_table[i] d2[i] = str(d2[i]).replace('\n','') build_str = build_str + d2[i] + ',' else: print('error: unspecified field') exit(0) build_str = build_str[:-1] # print(build_str[:-1]) build_str = build_str + '\n' curFile.close() build_str = build_str.replace('b','').replace("'",'').replace('"','') return (build_str)