def test_dict_to_hdf_with_datetime(): d = { 'e': [datetime.datetime.now() for i in range(5)], 'f': datetime.datetime.utcnow(), 'g': [('Hello', 5), (6, 'No HDF but json'), { 'foo': True }] } fname = 'test_hdfdict.h5' if os.path.isfile(fname): os.unlink(fname) hf = h5py.File(fname) hdfdict.dump(d, hf) res = hdfdict.load(hf) def equaldt(a, b): d = a - b return d.total_seconds() < 1e-3 assert all([equaldt(a, b) for (a, b) in zip(d['e'], res['e'])]) assert equaldt(d['f'], res['f']) assert d['g'][0][0] == 'Hello' assert d['g'][1][0] == 6 assert d.keys() == res.keys() hf.close() if os.path.isfile(fname): os.unlink(fname)
def test_dict_to_hdf(): if os.path.isfile(fname): os.unlink(fname) hdfdict.dump(d, fname) for lazy in [True, False]: res = hdfdict.load(fname, lazy=lazy) assume(np.all(d['a'] == res['a'])) assume(np.all(d['b'] == res['b'])) assume(np.all(d['c'] == res['c'])) assume(tuple(d.keys()) == tuple(res.keys()))
def test_dict_to_hdf_with_datetime(): d = { 'e': [datetime.datetime.now() for i in range(5)], 'f': datetime.datetime.utcnow(), 'g': [('Hello', 5), (6, 'No HDF but json'), { 'foo': True }], 'h': { 'test2': datetime.datetime.now(), 'again': ['a', 1], (1, 2): (3, 4) } } fname = 'test_hdfdict.h5' if os.path.isfile(fname): os.unlink(fname) hf = h5py.File(fname) hdfdict.dump(d, hf) res = hdfdict.load(hf, lazy=False) res = hdfdict.load(hf) res.unlazy() # all lazy objects will be rolled out. def equaldt(a, b): d = a - b return d.total_seconds() < 1e-3 assume(all([equaldt(a, b) for (a, b) in zip(d['e'], res['e'])])) assume(equaldt(d['f'], res['f'])) assume(d['g'][0][0] == 'Hello') assume(d['g'][1][0] == 6) assume(d.keys() == res.keys()) assume(isinstance(res['h']['test2'], datetime.datetime)) assume(res['h']['again'][0] == 'a') assume(res['h']['again'][1] == 1) hf.close() if os.path.isfile(fname): os.unlink(fname)
def load(input): """ Reads and convert an HDF5 group into a dictionary Parameters ---------- input: HDF5Group input dumped group Returns ------- dict """ input = hdfdict.load(input, lazy=False) input = recursively_read_dict_contents(input) return input
def load_model(self, fname): """ Load Model Loads the parameters and the architecture of the saved models :param fname: Directory from where the model saved be opened """ print("Model loading....") model_dict = dict(hdfdict.load(fname)) params_dict = model_dict["Parameters"] arch_dict = model_dict["Architecture"] self.reset() for key in arch_dict: self.add(arch_dict[key][0].decode('utf8'), int(arch_dict[key][1]), int(arch_dict[key][2]), arch_dict[key][3].decode('utf8'), int(arch_dict[key][4])) dee = 1 for layer in self.layer_names: layer.weights = params_dict["W" + str(dee)] layer.bias = params_dict["b" + str(dee)] dee += 1 print("Model loaded!")
def load_data(feature=None, dataset=None): features_dir = '../../../../../features' feature_path = os.path.join(features_dir, feature, dataset) hdf5_files = os.listdir(feature_path) feature = 'chroma' if feature == 'chromagram' else feature feature_data = { 'genre': [], 'label': [], feature: [], } for f in hdf5_files: data = dict(hdfdict.load(os.path.join(feature_path, f))) feature_data['genre'] += data['genre'].tolist() feature_data['label'] += data['label'].tolist() feature_data[feature] += data[feature].tolist() feature_data['genre'] = np.array(feature_data['genre']) feature_data['label'] = np.array(feature_data['label']) feature_data[feature] = np.array(feature_data[feature]) return feature_data
map_location=device) new_state_dict = OrderedDict() for key, val in c_checkpoint['model_b'].items(): new_key = key[7:] new_state_dict[new_key] = val speaker_encoder.load_state_dict(new_state_dict) #=======================Load in vocoder================================== vocoder = MelGan(device) try: with open(Config.dir_paths["melgan_config_path"]) as f: melgan_config = yaml.load(f, Loader=yaml.Loader) melgan_stats = hdfdict.load(Config.dir_paths["melgan_stats_path"]) except Exception as err: log.error(f"Unable to load in melgan config or stats ({err})") exit(0) target_embedding = np.load( args.target_embedding_path) #load in target embedding target_embedding = torch.from_numpy( target_embedding[np.newaxis, :]).to(device) source_embedding = np.load(args.source_embedding_path) source_embedding = torch.from_numpy( source_embedding[np.newaxis, :]).to(device) #========================Main loop start=========================== log.info("Started live_convert.py")
def main(): #Get unitcell volume if os.path.isfile(os.sys.argv[1]) : cp = [] with open(os.sys.argv[1],'r') as fh : dummy = fh.readline() alat = float(fh.readline()) for i in range(3): g = fh.readline().split() cp.append([float(g[0]),float(g[1]),float(g[2])]) factor = 1 cp = np.array(cp)*alat V = abs(np.dot(cp[0],np.cross(cp[1],cp[2])))*1e-30 else: print('No unitcell found') quit() factor = 1 nx = int(os.sys.argv[2]) ny = int(os.sys.argv[3]) nz = int(os.sys.argv[4]) T = int(os.sys.argv[5]) cp = np.array(cp)*alat V = abs(np.dot(cp[0],np.cross(cp[1],cp[2])))*1e-30 tail = str(nx) + str(ny) + str(nz) + '.hdf5' #KAPPA------------------------- #f = dd.io.load('kappa-m' + tail) f = hdfdict.load('kappa-m' + tail) mode_kappa = f['mode_kappa'] #weight = f['weight'][:] g = f['gamma'][:] gg = np.pi * g[0]*1e12 #NOTE: there should be a factor 4 here according to doc. (nq,nb) = np.shape(g[0]) nm = nq*nb alpha = V*nq v = np.array(f['group_velocity'])*1e2 #m/2 w = np.array(f['frequency'])*1e12 #1/s q = 1.60218e-19 #C kb = 1.380641e-23 #j/K h = 6.626070151e-34 #Js eta = w*h/T/kb/2 C = kb*np.power(eta,2)*np.power(np.sinh(eta),-2) #J/K f = gg.reshape(nm) I = np.where(f > 0.0) tau = np.zeros(nm) tau[I] = 1/f[I] w = w.reshape(nm) v = np.array([v[:,:,0].reshape(nb*nq),v[:,:,1].reshape(nb*nq),v[:,:,2].reshape(nb*nq)]) v = v.T C = C.reshape(nm) ftol = 1e-30 index = (np.logical_and(C>ftol,f>ftol)).nonzero()[0] exclude = (np.logical_or(C<=ftol,f<=ftol)).nonzero()[0] C = C[index] v = v[index] w = w[index] tau = tau[index] sigma = np.einsum('i,ij->ij',C,v) kappa = np.einsum('li,lj,l,l->ij',v,v,tau,C)/alpha print('KAPPA (RTA):') print(kappa) #--------------------------------- #FULL MATRIX---------------------------------- fname = 'unitary-m' + tail #f = dd.io.load(fname) f = hdfdict.load('unitary-m' + tail) Q = f['unitary_matrix'][0,0] #f = dd.io.load('coleigs-m' + tail) f = hdfdict.load('coleigs-m' + tail) D = f['collision_eigenvalues'][0] Dm = np.diag(D) Q = Q.reshape(nm,nm) #A = np.matmul(Q.T,np.matmul(Dm,Q))*1e12*np.pi QT = Q.T A = np.matmul(QT,(D*QT).T) A = np.delete(A,exclude,0) A = np.delete(A,exclude,1) #a = np.einsum('ij,i->j',A,np.sqrt(C)) #print(sum(a)) #print(sum(np.absolute(a))) #show() W = np.einsum('ij,i,j->ij',A,np.sqrt(C),np.sqrt(C))*1e12*np.pi #W = np.einsum('ij,i,j->ij',A,1/np.sqrt(C),1/np.sqrt(C))*1e12*np.pi print('Start inversion...') kappa = np.einsum('li,lk,kj->ij',sigma,pinvh(W),sigma)/alpha print('KAPPA (FULL):') print(kappa) data = {'W':W,'v':v,'C':C,'kappa':kappa,'alpha':np.array([alpha])} #np.savez_compressed('full.npz',data) #Saving data save_data('full',data) #hdfdict.dump(data,'full.h5') data = {'C':C/alpha,'tau':tau,'v':v,'kappa':kappa} saveCompressed('rta.npz',**data)
df = pd.concat([pd.DataFrame(df[c].tolist()).add_prefix(c) for c in df.columns], axis=1) dfd[k] = df l = len(obj[0]) #print (l) #print(dfd.keys()) print(name,"Adding col to dfd index ", k) #print(dfd.keys()) #for key, val in obj.attrs.items(): # print(" %s: %s" % (key, val),type(val)) f = h5py.File('walking5.h5', 'r') # Read h5 file f.visititems(print_attrs) # visititems is for visit all objects in this group and subgroups # In this case, object will be a Dataset instance for name in f: print(name) res = hdfdict.load("walking5.h5") print(res.keys()) writer = pd.ExcelWriter('hd5excelout18.xlsx', engine = 'xlsxwriter') for k, df in dfd.items(): print(k,len(df)) # print the key number and the number of rows for each dataframe df.columns = df.columns.str.replace(r'\d+', '') # remove all number (Zeros) of columns which have the same name df.to_excel(writer, sheet_name = 'sheet_len_'+k, index= False) writer.save() writer.close()
def load(cls, filepath): return cls(**_hdfdict.load(filepath, lazy=False))