Example #1
0
    def _create_tokenizers(
        self, train_data: Iterable[Tuple[str, str]]
    ) -> Tuple[KerasTokenizer, KerasTokenizer]:

        self.logger.info('fitting tokenizers...')
        counter_encoder = Counter()
        counter_decoder = Counter()
        train_preprocessed = (self.preprocessor(d) for d in train_data)
        for text_encoder, text_decoder in train_preprocessed:
            counter_encoder.update(text_encoder.split())
            counter_decoder.update(text_decoder.split())
        tokens_encoder = {
            token_count[0]
            for token_count in counter_encoder.most_common(
                self.max_vocab_size_encoder)
        }
        tokens_decoder = {
            token_count[0]
            for token_count in counter_decoder.most_common(
                self.max_vocab_size_decoder)
        }
        tokens_encoder.update(
            {self.preprocessor.start_token, self.preprocessor.end_token})
        tokens_decoder.update(
            {self.preprocessor.start_token, self.preprocessor.end_token})
        tokenizer_encoder = KerasTokenizer(oov_token=OOV_TOKEN,
                                           lower=False,
                                           filters='')
        tokenizer_decoder = KerasTokenizer(oov_token=OOV_TOKEN,
                                           lower=False,
                                           filters='')
        tokenizer_encoder.fit(sorted(list(tokens_encoder)))
        tokenizer_decoder.fit(sorted(list(tokens_decoder)))
        return tokenizer_encoder, tokenizer_decoder
    def test_serde_happy_path(self) -> None:
        preprocessor = Preprocessor()
        tokenizer = KerasTokenizer(oov_token='<unk>')
        tokenizer.fit(['a b c {} {}'.format(
            preprocessor.start_token, preprocessor.end_token)])
        vectorizer = Vectorizer(tokenizer, tokenizer)
        summarizer = AttentionSummarizer(lstm_size=10,
                                         max_prediction_len=10,
                                         embedding_size=10,
                                         embedding_encoder_trainable=False)
        summarizer.init_model(preprocessor=preprocessor,
                              vectorizer=vectorizer)

        # we need at least a train step to init the weights
        train_step = summarizer.new_train_step(masked_crossentropy, batch_size=1, apply_gradients=True)
        train_seq = tf.convert_to_tensor(np.array([[1, 1, 1]]), dtype=tf.int32)
        train_step(train_seq, train_seq)

        save_dir = os.path.join(self.temp_dir, 'summarizer_serde_happy_path')
        summarizer.save(save_dir)
        summarizer_loaded = AttentionSummarizer.load(save_dir)
        self.assertEqual(10, summarizer_loaded.lstm_size)
        self.assertEqual(10, summarizer_loaded.max_prediction_len)
        self.assertIsNotNone(summarizer_loaded.preprocessor)
        self.assertIsNotNone(summarizer_loaded.vectorizer)
        self.assertIsNotNone(summarizer_loaded.encoder)
        self.assertIsNotNone(summarizer_loaded.decoder)
        self.assertFalse(summarizer_loaded.encoder.embedding.trainable)
        self.assertTrue(summarizer_loaded.decoder.embedding.trainable)
        self.assertIsNotNone(summarizer_loaded.optimizer)

        pred = summarizer.predict_vectors('a c', '')
        pred_loaded = summarizer_loaded.predict_vectors('a c', '')
        np.testing.assert_almost_equal(pred['logits'], pred_loaded['logits'], decimal=6)
 def test_keras_tokenizer(self):
     tokenizer = KerasTokenizer(filters='', lower=False, oov_token='<unk>')
     tokenizer.fit(['a b c d'])
     encoded = tokenizer.encode('a b e')
     self.assertEqual([2, 3, 1], encoded)
     decoded = tokenizer.decode(encoded)
     self.assertEqual('a b <unk>', decoded)
     self.assertEqual(5, tokenizer.vocab_size)
     self.assertEqual({'a', 'b', 'c', 'd', '<unk>'},
                      tokenizer.token_index.keys())
     self.assertEqual({1, 2, 3, 4, 5}, set(tokenizer.token_index.values()))
    def test_serde_happy_path(self) -> None:
        preprocessor = Preprocessor(start_token='[CLS]', end_token='[SEP]')

        tokenizer_encoder = BertTokenizer.from_pretrained('bert-base-uncased')
        tokenizer_decoder = KerasTokenizer(oov_token='<unk>')
        tokenizer_decoder.fit([
            'a b c {} {}'.format(preprocessor.start_token,
                                 preprocessor.end_token)
        ])
        vectorizer = Vectorizer(tokenizer_encoder, tokenizer_decoder)
        summarizer = SummarizerBert(num_layers_encoder=1,
                                    num_layers_decoder=1,
                                    bert_embedding_encoder='bert-base-uncased',
                                    num_heads=2,
                                    max_prediction_len=3,
                                    embedding_size_encoder=768,
                                    embedding_size_decoder=10,
                                    embedding_encoder_trainable=False)
        summarizer.init_model(preprocessor=preprocessor, vectorizer=vectorizer)

        # we need at least a train step to init the weights
        train_step = summarizer.new_train_step(masked_crossentropy,
                                               batch_size=1,
                                               apply_gradients=True)
        train_seq = tf.convert_to_tensor(np.array([[1, 1, 1]]), dtype=tf.int32)
        train_step(train_seq, train_seq)

        save_dir = os.path.join(self.temp_dir, 'summarizer_serde_happy_path')
        summarizer.save(save_dir)
        summarizer_loaded = SummarizerBert.load(save_dir)
        self.assertEqual(1, summarizer_loaded.num_layers_encoder)
        self.assertEqual(1, summarizer_loaded.num_layers_decoder)
        self.assertEqual(2, summarizer_loaded.num_heads)
        self.assertEqual(3, summarizer_loaded.max_prediction_len)
        self.assertEqual(768, summarizer_loaded.embedding_size_encoder)
        self.assertEqual(10, summarizer_loaded.embedding_size_decoder)
        self.assertIsNotNone(summarizer_loaded.preprocessor)
        self.assertIsNotNone(summarizer_loaded.vectorizer)
        self.assertIsNotNone(summarizer_loaded.transformer)
        self.assertFalse(
            summarizer_loaded.transformer.encoder.embedding.trainable)
        self.assertTrue(
            summarizer_loaded.transformer.decoder.embedding.trainable)
        self.assertIsNotNone(summarizer_loaded.optimizer_encoder)
        self.assertIsNotNone(summarizer_loaded.optimizer_decoder)

        pred = summarizer.predict_vectors('a c', '')
        pred_loaded = summarizer_loaded.predict_vectors('a c', '')
        np.testing.assert_almost_equal(pred['logits'],
                                       pred_loaded['logits'],
                                       decimal=6)
Example #5
0
    def test_vectorize(self):
        data = [('a b c', 'd')]
        tokenizer_encoder = KerasTokenizer()
        tokenizer_decoder = KerasTokenizer()
        tokenizer_encoder.fit([data[0][0]])
        tokenizer_decoder.fit([data[0][1]])
        vectorizer = Vectorizer(tokenizer_encoder,
                                tokenizer_decoder,
                                max_output_len=3)
        data_vectorized = [vectorizer(d) for d in data]
        self.assertEqual([([1, 2, 3], [1, 0, 0])], data_vectorized)

        data = [('a b c', 'd d d d')]
        data_vectorized = [vectorizer(d) for d in data]
        self.assertEqual([([1, 2, 3], [1, 1, 1])], data_vectorized)
Example #6
0
 def setUp(self) -> None:
     tf.random.set_seed(42)
     np.random.seed(42)
     data = [('I love dogs.', 'Dogs.'), ('I love cats.', 'Cats.')]
     tokenizer_encoder = BertTokenizer.from_pretrained('bert-base-uncased')
     self.preprocessor = BertPreprocessor(nlp=English())
     data_prep = [self.preprocessor(d) for d in data]
     tokenizer_decoder = KerasTokenizer(lower=False, filters='')
     tokenizer_decoder.fit([d[1] for d in data_prep])
     self.vectorizer = BertVectorizer(tokenizer_encoder=tokenizer_encoder,
                                      tokenizer_decoder=tokenizer_decoder,
                                      max_output_len=10)
     batch_generator = DatasetGenerator(2, rank=3)
     data_vecs = [self.vectorizer(d) for d in data_prep]
     self.dataset = batch_generator(lambda: data_vecs)
     self.loss_func = masked_crossentropy
Example #7
0
 def setUp(self) -> None:
     tf.random.set_seed(42)
     np.random.seed(42)
     self.data = [('a b', 'c'), ('a b c', 'd')]
     tokenizer_encoder = KerasTokenizer(lower=False, filters='')
     tokenizer_decoder = KerasTokenizer(lower=False, filters='')
     tokenizer_encoder.fit(['a b c <start> <end>'])
     tokenizer_decoder.fit(['c d <start> <end>'])
     self.vectorizer = Vectorizer(tokenizer_encoder=tokenizer_encoder,
                                  tokenizer_decoder=tokenizer_decoder,
                                  max_output_len=3)
     self.preprocessor = Preprocessor()
     batch_generator = DatasetGenerator(2)
     data_prep = [self.preprocessor(d) for d in self.data]
     data_vecs = [self.vectorizer(d) for d in data_prep]
     self.dataset = batch_generator(lambda: data_vecs)
     self.loss_func = masked_crossentropy
Example #8
0
    def test_vectorize(self):
        data = ('[CLS] I love my dog. [SEP] [CLS] He is the best. [SEP]',
                '[CLS] Dog. [SEP]')
        tokenizer_encoder = BertTokenizer.from_pretrained('bert-base-uncased')
        tokenizer_decoder = KerasTokenizer()
        tokenizer_decoder.fit([data[1]])
        vectorizer = BertVectorizer(tokenizer_encoder,
                                    tokenizer_decoder,
                                    max_input_len=50,
                                    max_output_len=3)

        data_vectorized = vectorizer(data)
        expected = ([
            101, 1045, 2293, 2026, 3899, 1012, 102, 101, 2002, 2003, 1996,
            2190, 1012, 102
        ], [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1], [1, 2, 3])
        self.assertEqual(expected, data_vectorized)
        input_decoded = vectorizer.decode_input(expected[0])
        expected = '[CLS] i love my dog. [SEP] [CLS] he is the best. [SEP]'
        self.assertEqual(expected, input_decoded)
Example #9
0
    def test_training(self) -> None:
        data = [('a b', 'c'), ('a b c', 'd')]
        tokenizer_encoder = KerasTokenizer(lower=False, filters='')
        tokenizer_decoder = KerasTokenizer(lower=False, filters='')
        tokenizer_encoder.fit(['a b c <start> <end>'])
        tokenizer_decoder.fit(['c d <start> <end>'])
        vectorizer = Vectorizer(tokenizer_encoder=tokenizer_encoder,
                                tokenizer_decoder=tokenizer_decoder,
                                max_output_len=3)
        preprocessor = Preprocessor()
        batch_generator = DatasetGenerator(2)
        data_prep = [preprocessor(d) for d in data]
        data_vecs = [vectorizer(d) for d in data_prep]
        dataset = batch_generator(lambda: data_vecs)

        summarizer_transformer = SummarizerTransformer(num_heads=1,
                                                       num_layers=1,
                                                       feed_forward_dim=20,
                                                       embedding_size=10,
                                                       dropout_rate=0,
                                                       max_prediction_len=3)

        summarizer_transformer.init_model(preprocessor=preprocessor,
                                          vectorizer=vectorizer,
                                          embedding_weights_encoder=None,
                                          embedding_weights_decoder=None)

        summarizer_attention = SummarizerAttention(lstm_size=10,
                                                   embedding_size=10)

        summarizer_attention.init_model(preprocessor=preprocessor,
                                        vectorizer=vectorizer,
                                        embedding_weights_encoder=None,
                                        embedding_weights_decoder=None)

        summarizer = SummarizerBasic(lstm_size=10, embedding_size=10)

        summarizer.init_model(preprocessor=preprocessor,
                              vectorizer=vectorizer,
                              embedding_weights_encoder=None,
                              embedding_weights_decoder=None)

        loss_func = masked_crossentropy

        loss_attention = 0
        train_step = summarizer_attention.new_train_step(
            loss_function=loss_func, batch_size=2)
        for _ in range(10):
            for source_seq, target_seq in dataset.take(-1):
                loss_attention = train_step(source_seq, target_seq)
                print(str(loss_attention))

        self.assertAlmostEqual(1.5810251235961914, float(loss_attention), 10)
        output_attention = summarizer_attention.predict_vectors('a c', '')
        expected_first_logits = np.array(
            [-0.069454, 0.00272, 0.007199, -0.039547, 0.014357])
        np.testing.assert_allclose(expected_first_logits,
                                   output_attention['logits'][0],
                                   atol=1e-6)
        self.assertEqual('a c', output_attention['preprocessed_text'][0])
        self.assertEqual('<end>', output_attention['predicted_text'])

        loss = 0
        train_step = summarizer.new_train_step(loss_function=loss_func,
                                               batch_size=2)
        for e in range(0, 10):
            for source_seq, target_seq in dataset.take(-1):
                loss = train_step(source_seq, target_seq)

        self.assertAlmostEqual(1.5771859884262085, float(loss), 10)
        output = summarizer.predict_vectors('a c', '')
        expected_first_logits = np.array(
            [-0.03838864, 0.01226684, 0.01055636, -0.05209339, 0.02549592])
        np.testing.assert_allclose(expected_first_logits,
                                   output['logits'][0],
                                   atol=1e-6)
        self.assertEqual('a c', output['preprocessed_text'][0])
        self.assertEqual('<end>', output['predicted_text'])

        loss_transformer = 0
        train_step = summarizer_transformer.new_train_step(
            loss_function=loss_func, batch_size=2)
        for e in range(0, 10):
            for source_seq, target_seq in dataset.take(-1):
                loss_transformer = train_step(source_seq, target_seq)
                print(str(loss_transformer))

        self.assertAlmostEqual(1.2841172218322754, float(loss_transformer), 10)
        output_transformer = summarizer_transformer.predict_vectors('a c', '')

        expected_first_logits = np.array(
            [0.094787, 0.516092, 1.165521, 0.271338, 0.670318])
        np.testing.assert_allclose(expected_first_logits,
                                   output_transformer['logits'][0],
                                   atol=1e-6)
        self.assertEqual('a c', output_transformer['preprocessed_text'][0])
        self.assertEqual('d <end>', output_transformer['predicted_text'])
Example #10
0
    def test_training(self) -> None:
        data = [('a b', 'c'), ('a b c', 'd')]
        tokenizer_encoder = KerasTokenizer(lower=False, filters='')
        tokenizer_decoder = KerasTokenizer(lower=False, filters='')
        tokenizer_encoder.fit(['a b c <start> <end>'])
        tokenizer_decoder.fit(['c d <start> <end>'])
        vectorizer = Vectorizer(tokenizer_encoder=tokenizer_encoder,
                                tokenizer_decoder=tokenizer_decoder,
                                max_output_len=3)
        preprocessor = Preprocessor()
        batch_generator = DatasetGenerator(2)
        data_prep = [preprocessor(d) for d in data]
        data_vecs = [vectorizer(d) for d in data_prep]
        dataset = batch_generator(lambda: data_vecs)

        summarizer_transformer = SummarizerTransformer(num_heads=1,
                                                       num_layers=1,
                                                       feed_forward_dim=20,
                                                       embedding_size=10,
                                                       dropout_rate=0,
                                                       max_prediction_len=3)

        summarizer_transformer.init_model(preprocessor=preprocessor,
                                          vectorizer=vectorizer,
                                          embedding_weights_encoder=None,
                                          embedding_weights_decoder=None)

        summarizer_attention = SummarizerAttention(lstm_size=10,
                                                   embedding_size=10)

        summarizer_attention.init_model(preprocessor=preprocessor,
                                        vectorizer=vectorizer,
                                        embedding_weights_encoder=None,
                                        embedding_weights_decoder=None)

        summarizer = SummarizerBasic(lstm_size=10, embedding_size=10)

        summarizer.init_model(preprocessor=preprocessor,
                              vectorizer=vectorizer,
                              embedding_weights_encoder=None,
                              embedding_weights_decoder=None)

        loss_func = masked_crossentropy

        loss_attention = 0
        train_step = summarizer_attention.new_train_step(
            loss_function=loss_func, batch_size=2)
        for _ in range(10):
            for source_seq, target_seq in dataset.take(-1):
                loss_attention = train_step(source_seq, target_seq)
                print(str(loss_attention))

        self.assertAlmostEqual(1.577033519744873, float(loss_attention), 5)
        output_attention = summarizer_attention.predict_vectors('a c', '')
        expected_first_logits = np.array(
            [-0.077805, 0.012667, 0.021359, -0.04872, 0.014989])
        np.testing.assert_allclose(expected_first_logits,
                                   output_attention['logits'][0],
                                   atol=1e-6)
        self.assertEqual('<start> a c <end>',
                         output_attention['preprocessed_text'][0])
        self.assertEqual('d <end>', output_attention['predicted_text'])

        loss = 0
        train_step = summarizer.new_train_step(loss_function=loss_func,
                                               batch_size=2)
        for e in range(0, 10):
            for source_seq, target_seq in dataset.take(-1):
                loss = train_step(source_seq, target_seq)

        self.assertAlmostEqual(1.5713274478912354, float(loss), 5)
        output = summarizer.predict_vectors('a c', '')
        expected_first_logits = np.array(
            [-0.051753, 0.013869, 0.010337, -0.073727, 0.033059])
        np.testing.assert_allclose(expected_first_logits,
                                   output['logits'][0],
                                   atol=1e-6)
        self.assertEqual('<start> a c <end>', output['preprocessed_text'][0])
        self.assertEqual('<end>', output['predicted_text'])

        loss_transformer = 0
        train_step = summarizer_transformer.new_train_step(
            loss_function=loss_func, batch_size=2)
        for e in range(0, 10):
            for source_seq, target_seq in dataset.take(-1):
                loss_transformer = train_step(source_seq, target_seq)
                print(str(loss_transformer))

        self.assertAlmostEqual(1.175953984260559, float(loss_transformer), 5)
        output_transformer = summarizer_transformer.predict_vectors('a c', '')

        expected_first_logits = np.array(
            [-0.197903, 0.884185, 1.147212, 0.318798, 0.97936])
        np.testing.assert_allclose(expected_first_logits,
                                   output_transformer['logits'][0],
                                   atol=1e-6)
        self.assertEqual('<start> a c <end>',
                         output_transformer['preprocessed_text'][0])
        self.assertEqual('d <end>', output_transformer['predicted_text'])