def test_percent_error(): number_of_classes = 10 number_of_test_samples_to_use = 100 (X_train, y_train), (X_test, y_test) = tf.keras.datasets.mnist.load_data() X_test_vectorized = ((X_test.reshape( X_test.shape[0], -1)).T)[:, 0:number_of_test_samples_to_use] y_test = y_test[0:number_of_test_samples_to_use] input_dimensions = X_test_vectorized.shape[0] model = Hebbian(input_dimensions=input_dimensions, number_of_classes=number_of_classes, transfer_function="Sigmoid", seed=5) percent_error = model.calculate_percent_error(X_test_vectorized, y_test) np.testing.assert_almost_equal(percent_error, 0.86, decimal=2) model = Hebbian(input_dimensions=input_dimensions, number_of_classes=number_of_classes, transfer_function="Linear", seed=15) percent_error = model.calculate_percent_error(X_test_vectorized, y_test) np.testing.assert_almost_equal(percent_error, 0.96, decimal=2) model = Hebbian(input_dimensions=input_dimensions, number_of_classes=number_of_classes, transfer_function="Hard_limit", seed=8) percent_error = model.calculate_percent_error(X_test_vectorized, y_test) np.testing.assert_almost_equal(percent_error, 0.91, decimal=2)
def test_confusion_matrix(): # Read mnist data number_of_classes = 10 number_of_test_samples_to_use = 100 (X_train, y_train), (X_test, y_test) = tf.keras.datasets.mnist.load_data() X_test_vectorized = ((X_test.reshape( X_test.shape[0], -1)).T)[:, 0:number_of_test_samples_to_use] y_test = y_test[0:number_of_test_samples_to_use] input_dimensions = X_test_vectorized.shape[0] model = Hebbian(input_dimensions=input_dimensions, number_of_classes=number_of_classes, transfer_function="Sigmoid", seed=5) confusion_matrix = model.calculate_confusion_matrix( X_test_vectorized, y_test) assert np.array_equal(confusion_matrix, np.array(\ [ [0.,6.,2.,0.,0.,0.,0.,0.,0.,0.], [1., 10.,0.,3.,0.,0.,0.,0.,0.,0.], [0.,6.,1.,1.,0.,0.,0.,0.,0.,0.], [0.,8.,0.,3.,0.,0.,0.,0.,0.,0.], [1.,11.,1.,1.,0.,0.,0.,0.,0.,0.], [1.,5.,1.,0.,0.,0.,0.,0.,0.,0.], [0.,9.,0.,1.,0.,0.,0.,0.,0.,0.], [0.,7.,4.,1.,3.,0.,0.,0.,0.,0.], [0.,2.,0.,0.,0.,0.,0.,0.,0.,0.], [1.,7.,2.,1.,0.,0.,0.,0.,0.,0.]])) model = Hebbian(input_dimensions=input_dimensions, number_of_classes=number_of_classes, transfer_function="Linear", seed=5) confusion_matrix = model.calculate_confusion_matrix( X_test_vectorized, y_test) assert np.array_equal(confusion_matrix, np.array( \ [[0., 1., 1., 0., 5., 0., 0., 1., 0., 0.], [0., 1., 0., 0., 2., 0., 0., 11., 0., 0.], [0., 1., 0., 1., 4., 0., 1., 1., 0., 0.], [0., 0., 0., 3., 3., 0., 1., 4., 0., 0.], [0., 4., 0., 0., 6., 0., 0., 4., 0., 0.], [0., 1., 1., 0., 2., 0., 0., 2., 0., 1.], [0., 1., 0., 0., 3., 0., 0., 6., 0., 0.], [0., 0., 0., 0., 8., 0., 0., 4., 3., 0.], [0., 0., 1., 0., 1., 0., 0., 0., 0., 0.], [0., 2., 0., 1., 1., 0., 0., 7., 0., 0.]])) model = Hebbian(input_dimensions=input_dimensions, number_of_classes=number_of_classes, transfer_function="Hard_limit", seed=5) confusion_matrix = model.calculate_confusion_matrix( X_test_vectorized, y_test) assert np.array_equal(confusion_matrix, np.array( \ [[0., 6., 2., 0., 0., 0., 0., 0., 0., 0.], [1., 10., 0., 3., 0., 0., 0., 0., 0., 0.], [0., 6., 1., 1., 0., 0., 0., 0., 0., 0.], [0., 8., 0., 3., 0., 0., 0., 0., 0., 0.], [1., 12., 0., 1., 0., 0., 0., 0., 0., 0.], [1., 5., 1., 0., 0., 0., 0., 0., 0., 0.], [0., 9., 0., 1., 0., 0., 0., 0., 0., 0.], [0., 7., 4., 1., 3., 0., 0., 0., 0., 0.], [0., 2., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 7., 2., 1., 0., 0., 0., 0., 0., 0.]]))
def test_predict_2(): number_of_classes = 10 number_of_training_samples_to_use = 3 (X_train, y_train), (X_test, y_test) = tf.keras.datasets.mnist.load_data() X_train_vectorized = ((X_train.reshape( X_train.shape[0], -1)).T)[:, 0:number_of_training_samples_to_use] y_train = y_train[0:number_of_training_samples_to_use] input_dimensions = X_train_vectorized.shape[0] model = Hebbian(input_dimensions=input_dimensions, number_of_classes=number_of_classes, transfer_function="Linear", seed=5) Y_hat = model.predict(X_train_vectorized) np.testing.assert_almost_equal(Y_hat, np.array( \ [[-4101.41409432, -3820.1709349, -1235.86331202], [854.07167203, 4061.22006877, 434.40971256], [-552.17756811, -1791.61373625, -2591.16737069], [-355.4367891, -3858.75847581, 1320.1141753], [1087.86080571, -607.49532925, -460.80234811], [-2459.84338339, -1681.30331925, -255.00327678], [-460.58803655, -4439.85928602, -1093.82071536], [4066.25628304, 4814.90762933, 1955.78972208], [564.64444411, -3117.99849963, -419.49244877], [-2374.84426405, -2878.08764629, 2979.99404738]]), decimal=2) model = Hebbian(input_dimensions=input_dimensions, number_of_classes=number_of_classes, transfer_function="Hard_limit", seed=5) Y_hat = model.predict(X_train_vectorized) assert (np.allclose(Y_hat, np.array( \ [[0, 0, 0], [1, 1, 1], [0, 0, 0], [0, 0, 1], [1, 0, 0], [0, 0, 0], [0, 0, 0], [1, 1, 1], [1, 0, 0], [0, 0, 1]]),rtol=1e-3, atol=1e-3)) model = Hebbian(input_dimensions=input_dimensions, number_of_classes=number_of_classes, transfer_function="Hard_limit", seed=5) Y_hat = model.predict(X_train_vectorized) assert np.allclose(Y_hat, np.array( \ [[0.00000000e+000, 0.00000000e+000, 0.00000000e+000], [1.00000000e+000, 1.00000000e+000, 1.00000000e+000], [1.55714531e-240, 0.00000000e+000, 0.00000000e+000], [4.32278692e-155, 0.00000000e+000, 1.00000000e+000], [1.00000000e+000, 1.47275575e-264, 7.51766500e-201], [0.00000000e+000, 0.00000000e+000, 1.79260263e-111], [9.31445172e-201, 0.00000000e+000, 0.00000000e+000], [1.00000000e+000, 1.00000000e+000, 1.00000000e+000], [1.00000000e+000, 0.00000000e+000, 6.55759060e-183], [0.00000000e+000, 0.00000000e+000, 1.00000000e+000]]),rtol=1e-3, atol=1e-3)
def test_weight_dimension(): input_dimensions = 4 number_of_classes = 9 model = Hebbian(input_dimensions=input_dimensions, number_of_classes=number_of_classes, transfer_function="Hard_limit") assert model.weights.ndim == 2 and \ model.weights.shape[0] == number_of_classes and \ model.weights.shape[1] == (input_dimensions + 1)
def test_predict(): input_dimensions = 2 number_of_classes = 2 model = Hebbian(input_dimensions=input_dimensions, number_of_classes=number_of_classes, transfer_function="Hard_limit",seed=1) X_train = np.array([[-1.43815556, 0.10089809, -1.25432937, 1.48410426], [-1.81784194, 0.42935033, -1.2806198, 0.06527391]]) model.initialize_all_weights_to_zeros() Y_hat = model.predict(X_train) assert (np.array_equal(Y_hat, np.array([[0,0,0,0], [0,0,0,0]]))) or \ (np.array_equal(Y_hat, np.array([[1,1,1,1], [1,1,1,1]])))
def test_weight_initialization(): input_dimensions = 2 number_of_classes = 5 model = Hebbian(input_dimensions=2, number_of_classes=number_of_classes, transfer_function="Hard_limit",seed=1) assert model.weights.ndim == 2 and model.weights.shape[0] == number_of_classes and model.weights.shape[ 1] == input_dimensions + 1 weights = np.array([[1.62434536, -0.61175641, -0.52817175], [-1.07296862, 0.86540763, -2.3015387], [1.74481176, -0.7612069, 0.3190391], [-0.24937038, 1.46210794, -2.06014071], [-0.3224172, -0.38405435, 1.13376944]]) np.testing.assert_allclose(model.weights, weights, rtol=1e-3, atol=1e-3) model.initialize_all_weights_to_zeros() assert np.array_equal(model.weights, np.zeros((number_of_classes, input_dimensions + 1)))
def test_training(): number_of_classes = 10 number_of_training_samples_to_use = 1000 number_of_test_samples_to_use = 100 (X_train, y_train), (X_test, y_test) = tf.keras.datasets.mnist.load_data() X_train_vectorized = ((X_train.reshape( X_train.shape[0], -1)).T)[:, 0:number_of_training_samples_to_use] y_train = y_train[0:number_of_training_samples_to_use] X_test_vectorized = ((X_test.reshape( X_test.shape[0], -1)).T)[:, 0:number_of_test_samples_to_use] y_test = y_test[0:number_of_test_samples_to_use] input_dimensions = X_test_vectorized.shape[0] model = Hebbian(input_dimensions=input_dimensions, number_of_classes=number_of_classes, transfer_function="Hard_limit", seed=5) model.initialize_all_weights_to_zeros() percent_error = [] for k in range(10): model.train(X_train_vectorized, y_train, batch_size=300, num_epochs=2, alpha=0.1, gamma=0.1, learning="Delta") percent_error.append( model.calculate_percent_error(X_test_vectorized, y_test)) confusion_matrix = model.calculate_confusion_matrix( X_test_vectorized, y_test) assert (np.array_equal(confusion_matrix, np.array( \ [[8., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 13., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 0., 7., 0., 0., 0., 0., 0., 0., 0.], [2., 0., 1., 8., 0., 0., 0., 0., 0., 0.], [1., 0., 0., 1., 12., 0., 0., 0., 0., 0.], [4., 0., 1., 0., 0., 2., 0., 0., 0., 0.], [3., 0., 2., 0., 0., 0., 5., 0., 0., 0.], [1., 0., 0., 2., 0., 0., 0., 11., 0., 1.], [2., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 0., 0., 0., 0., 0., 0., 1., 0., 9.]]))) or \ (np.array_equal(confusion_matrix, np.array( \ [[8., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 13., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 0., 6., 0., 0., 0., 1., 0., 0., 0.], [2., 0., 1., 8., 0., 0., 0., 0., 0., 0.], [2., 0., 0., 1., 11., 0., 0., 0., 0., 0.], [4., 0., 1., 0., 0., 2., 0., 0., 0., 0.], [4., 0., 1., 0., 0., 0., 5., 0., 0., 0.], [2., 0., 0., 1., 0., 0., 0., 12., 0., 0.], [1., 0., 0., 0., 0., 0., 0., 0., 1., 0.], [3., 0., 0., 0., 0., 0., 0., 3., 0., 5.]]))) assert np.allclose(percent_error, np.array([0.74, 0.35, 0.32, 0.3, 0.28, 0.32, 0.25, 0.26, 0.3, 0.25]),rtol=1e-3, atol=1e-3) or \ np.allclose(percent_error, np.array([0.8 ,0.37,0.36,0.32,0.31,0.31,0.29,0.29,0.24,0.29]), rtol=1e-3, atol=1e-3) model = Hebbian(input_dimensions=input_dimensions, number_of_classes=number_of_classes, transfer_function="Linear", seed=5) percent_error = [] for k in range(10): model.train(X_train_vectorized, y_train, batch_size=300, num_epochs=2, alpha=0.1, gamma=0.1, learning="Filtered") percent_error.append( model.calculate_percent_error(X_test_vectorized, y_test)) confusion_matrix = model.calculate_confusion_matrix( X_test_vectorized, y_test) assert np.array_equal(confusion_matrix, np.array( \ [[8., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 11., 0., 1., 0., 0., 0., 0., 2., 0.], [2., 0., 4., 1., 0., 0., 0., 1., 0., 0.], [2., 0., 1., 8., 0., 0., 0., 0., 0., 0.], [1., 0., 0., 0., 11., 0., 0., 1., 0., 1.], [5., 0., 0., 1., 0., 0., 0., 1., 0., 0.], [3., 0., 1., 0., 0., 0., 6., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 15., 0., 0.], [0., 0., 1., 0., 0., 0., 0., 0., 1., 0.], [0., 0., 0., 0., 0., 0., 0., 8., 1., 2.]])) np.testing.assert_almost_equal( percent_error, [0.34, 0.34, 0.34, 0.34, 0.34, 0.34, 0.34, 0.34, 0.34, 0.34], decimal=2)
"""Block 2""" model.add(Conv2D(32, (5, 5), strides=(1, 1), padding='same')) model.add(Activation('relu')) model.add( AveragePooling2D(pool_size=(3, 3), strides=(2, 2), padding='same')) """Block 3""" model.add(Conv2D(64, (5, 5), strides=(1, 1), padding='same')) model.add(Activation('relu')) model.add( AveragePooling2D(pool_size=(3, 3), strides=(2, 2), padding='same')) """Block 4""" model.add(Flatten()) model.add(Dense(64)) model.add(Activation('relu')) model.add( Hebbian(model.layers[-1].output_shape[1:], lmbda, eta, connectivity, connectivity_prob)) """Block 5""" model.add(Dense(10)) """Loss Layer""" model.add(Activation('softmax')) """Optimizer""" model.compile(loss=losses.categorical_crossentropy, optimizer='adam', metrics=['accuracy']) x_train = x_train.astype('float32') x_valid = x_valid.astype('float32') x_train /= 255 x_valid /= 255 # check model checkpointing callback which saves only the "best" network according to the 'best_criterion' optional argument (defaults to validation loss)