Example #1
0
def main(write_output=True):
    from hedge.backends import guess_run_context
    rcon = guess_run_context(
                    #["cuda"]
                    )

    gamma = 1.4

    # at A=1 we have case of isentropic vortex, source terms 
    # arise for other values
    densityA = 2.0

    from hedge.tools import EOCRecorder, to_obj_array
    eoc_rec = EOCRecorder()

    if rcon.is_head_rank:
        from hedge.mesh import \
                make_rect_mesh, \
                make_centered_regular_rect_mesh

        refine = 1
        mesh = make_centered_regular_rect_mesh((0,-5), (10,5), n=(9,9),
                post_refine_factor=refine)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [4,5]:
        discr = rcon.make_discretization(mesh_data, order=order,
                        debug=[#"cuda_no_plan",
                        #"print_op_code"
                        ],
                        default_scalar_type=numpy.float64)

        from hedge.visualization import SiloVisualizer, VtkVisualizer
        #vis = VtkVisualizer(discr, rcon, "vortex-%d" % order)
        vis = SiloVisualizer(discr, rcon)

        vortex = Vortex(beta=5, gamma=gamma,
                center=[5,0],
                velocity=[1,0], densityA=densityA)
        fields = vortex.volume_interpolant(0, discr)
        sources=SourceTerms(beta=5, gamma=gamma,
                center=[5,0],
                velocity=[1,0], densityA=densityA)

        from hedge.models.gas_dynamics import (
                GasDynamicsOperator, GammaLawEOS)
        from hedge.mesh import TAG_ALL

        op = GasDynamicsOperator(dimensions=2,
                mu=0.0, prandtl=0.72, spec_gas_const=287.1, 
                equation_of_state=GammaLawEOS(vortex.gamma),
                bc_inflow=vortex, bc_outflow=vortex, bc_noslip=vortex,
                inflow_tag=TAG_ALL, source=sources)

        euler_ex = op.bind(discr)

        max_eigval = [0]
        def rhs(t, q):
            ode_rhs, speed = euler_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs
        rhs(0, fields)

        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements=", len(mesh.elements)

        # limiter setup -------------------------------------------------------
        from hedge.models.gas_dynamics import SlopeLimiter1NEuler
        limiter = SlopeLimiter1NEuler(discr, gamma, 2, op)

        # time stepper --------------------------------------------------------
        from hedge.timestep import SSPRK3TimeStepper, RK4TimeStepper
        #stepper = SSPRK3TimeStepper(limiter=limiter)
        #stepper = SSPRK3TimeStepper()
        stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from pytools.log import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        if write_output:
            log_file_name = "euler-%d.dat" % order
        else:
            log_file_name = None

        logmgr = LogManager(log_file_name, "w", rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # timestep loop -------------------------------------------------------
        t = 0

        #fields = limiter(fields)

        try:
            from hedge.timestep import times_and_steps
            step_it = times_and_steps(
                    final_time=.1,
                    #max_steps=500,
                    logmgr=logmgr,
                    max_dt_getter=lambda t: 0.4*op.estimate_timestep(discr,
                        stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            for step, t, dt in step_it:
                if step % 1 == 0 and write_output:
                #if False:
                    visf = vis.make_file("vortex-%d-%04d" % (order, step))

                    true_fields = vortex.volume_interpolant(t, discr)

                    #rhs_fields = rhs(t, fields)

                    from pyvisfile.silo import DB_VARTYPE_VECTOR
                    vis.add_data(visf,
                            [
                                ("rho", discr.convert_volume(op.rho(fields), kind="numpy")),
                                ("e", discr.convert_volume(op.e(fields), kind="numpy")),
                                ("rho_u", discr.convert_volume(op.rho_u(fields), kind="numpy")),
                                ("u", discr.convert_volume(op.u(fields), kind="numpy")),

                                #("true_rho", discr.convert_volume(op.rho(true_fields), kind="numpy")),
                                #("true_e", discr.convert_volume(op.e(true_fields), kind="numpy")),
                                #("true_rho_u", discr.convert_volume(op.rho_u(true_fields), kind="numpy")),
                                #("true_u", discr.convert_volume(op.u(true_fields), kind="numpy")),

                                #("rhs_rho", discr.convert_volume(op.rho(rhs_fields), kind="numpy")),
                                #("rhs_e", discr.convert_volume(op.e(rhs_fields), kind="numpy")),
                                #("rhs_rho_u", discr.convert_volume(op.rho_u(rhs_fields), kind="numpy")),
                                ],
                            expressions=[
                                #("diff_rho", "rho-true_rho"),
                                #("diff_e", "e-true_e"),
                                #("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),

                                ("p", "0.4*(e- 0.5*(rho_u*u))"),
                                ],
                            time=t, step=step
                            )
                    visf.close()

                fields = stepper(fields, t, dt, rhs)

            true_fields = vortex.volume_interpolant(t, discr)
            l2_error = discr.norm(fields-true_fields)
            l2_error_rho = discr.norm(op.rho(fields)-op.rho(true_fields))
            l2_error_e = discr.norm(op.e(fields)-op.e(true_fields))
            l2_error_rhou = discr.norm(op.rho_u(fields)-op.rho_u(true_fields))
            l2_error_u = discr.norm(op.u(fields)-op.u(true_fields))

            eoc_rec.add_data_point(order, l2_error_rho)
            print
            print eoc_rec.pretty_print("P.Deg.", "L2 Error")

            logmgr.set_constant("l2_error", l2_error)
            logmgr.set_constant("l2_error_rho", l2_error_rho)
            logmgr.set_constant("l2_error_e", l2_error_e)
            logmgr.set_constant("l2_error_rhou", l2_error_rhou)
            logmgr.set_constant("l2_error_u", l2_error_u)
            logmgr.set_constant("refinement", refine)

        finally:
            if write_output:
                vis.close()

            logmgr.close()
            discr.close()
Example #2
0
def main():
    from hedge.backends import guess_run_context
    rcon = guess_run_context(
        #["cuda"]
    )

    from hedge.tools import EOCRecorder, to_obj_array
    eoc_rec = EOCRecorder()

    def boundary_tagger(vertices, el, face_nr, all_v):
        return ["inflow"]

    if rcon.is_head_rank:
        from hedge.mesh import make_rect_mesh, \
                               make_centered_regular_rect_mesh
        #mesh = make_rect_mesh((0,0), (10,1), max_area=0.01)
        refine = 1
        mesh = make_centered_regular_rect_mesh(
            (0, 0),
            (10, 1),
            n=(20, 4),
            #periodicity=(True, False),
            post_refine_factor=refine,
            boundary_tagger=boundary_tagger)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [3]:
        discr = rcon.make_discretization(mesh_data,
                                         order=order,
                                         default_scalar_type=numpy.float64)

        from hedge.visualization import SiloVisualizer, VtkVisualizer
        #vis = VtkVisualizer(discr, rcon, "shearflow-%d" % order)
        vis = SiloVisualizer(discr, rcon)

        shearflow = SteadyShearFlow()
        fields = shearflow.volume_interpolant(0, discr)
        gamma, mu, prandtl, spec_gas_const = shearflow.properties()

        from hedge.models.gas_dynamics import GasDynamicsOperator
        op = GasDynamicsOperator(dimensions=2,
                                 gamma=gamma,
                                 mu=mu,
                                 prandtl=prandtl,
                                 spec_gas_const=spec_gas_const,
                                 bc_inflow=shearflow,
                                 bc_outflow=shearflow,
                                 bc_noslip=shearflow,
                                 inflow_tag="inflow",
                                 outflow_tag="outflow",
                                 noslip_tag="noslip")

        navierstokes_ex = op.bind(discr)

        max_eigval = [0]

        def rhs(t, q):
            ode_rhs, speed = navierstokes_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs

        # needed to get first estimate of maximum eigenvalue
        rhs(0, fields)

        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements=", len(mesh.elements)

        from hedge.timestep import RK4TimeStepper
        stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from pytools.log import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        logmgr = LogManager("navierstokes-cpu-%d-%d.dat" % (order, refine),
                            "w", rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # timestep loop -------------------------------------------------------
        try:
            from hedge.timestep import times_and_steps
            step_it = times_and_steps(
                final_time=0.3,
                #max_steps=500,
                logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(
                    discr, stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            for step, t, dt in step_it:
                if step % 10 == 0:
                    #if False:
                    visf = vis.make_file("shearflow-%d-%04d" % (order, step))

                    #true_fields = shearflow.volume_interpolant(t, discr)

                    from pyvisfile.silo import DB_VARTYPE_VECTOR
                    vis.add_data(
                        visf,
                        [
                            ("rho",
                             discr.convert_volume(op.rho(fields),
                                                  kind="numpy")),
                            ("e",
                             discr.convert_volume(op.e(fields), kind="numpy")),
                            ("rho_u",
                             discr.convert_volume(op.rho_u(fields),
                                                  kind="numpy")),
                            ("u",
                             discr.convert_volume(op.u(fields), kind="numpy")),

                            #("true_rho", discr.convert_volume(op.rho(true_fields), kind="numpy")),
                            #("true_e", discr.convert_volume(op.e(true_fields), kind="numpy")),
                            #("true_rho_u", discr.convert_volume(op.rho_u(true_fields), kind="numpy")),
                            #("true_u", discr.convert_volume(op.u(true_fields), kind="numpy")),
                        ],
                        expressions=[
                            #("diff_rho", "rho-true_rho"),
                            #("diff_e", "e-true_e"),
                            #("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),
                            ("p", "0.4*(e- 0.5*(rho_u*u))"),
                        ],
                        time=t,
                        step=step)
                    visf.close()

                fields = stepper(fields, t, dt, rhs)

            true_fields = shearflow.volume_interpolant(t, discr)
            l2_error = discr.norm(op.u(fields) - op.u(true_fields))
            eoc_rec.add_data_point(order, l2_error)
            print
            print eoc_rec.pretty_print("P.Deg.", "L2 Error")

            logmgr.set_constant("l2_error", l2_error)

        finally:
            vis.close()
            logmgr.save()
            discr.close()
Example #3
0
def run_setup(units, casename, setup, discr, pusher, visualize=False):
    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    from hedge.visualization import SiloVisualizer
    from hedge.models.em import MaxwellOperator

    vis = SiloVisualizer(discr)

    from pyrticle.cloud import PicMethod
    from pyrticle.deposition.shape import ShapeFunctionDepositor
    method = PicMethod(discr,
                       units,
                       ShapeFunctionDepositor(),
                       pusher(),
                       3,
                       3,
                       debug=set(["verbose_vis"]))

    e, h = setup.fields(discr)
    b = units.MU0 * h

    init_positions = setup.positions(0)
    init_velocities = setup.velocities(0)

    nparticles = len(init_positions)

    state = method.make_state()
    method.add_particles(
        state,
        zip(
            init_positions,
            init_velocities,
            nparticles * [setup.charge],
            nparticles * [units.EL_MASS],
        ), nparticles)

    final_time = setup.final_time()
    nsteps = setup.nsteps()
    dt = final_time / nsteps

    # timestepping ------------------------------------------------------------
    from hedge.models.em import MaxwellOperator
    max_op = MaxwellOperator(epsilon=units.EPSILON0, mu=units.MU0, flux_type=1)

    fields = max_op.assemble_eh(e, h)

    from pyrticle.cloud import \
            FieldToParticleRhsCalculator, \
            ParticleRhsCalculator
    p_rhs_calculator = ParticleRhsCalculator(method, max_op)
    f2p_rhs_calculator = FieldToParticleRhsCalculator(method, max_op)

    def rhs(t, ts_state):
        return (p_rhs_calculator(t, lambda: fields, lambda: ts_state.state) +
                f2p_rhs_calculator(t, lambda: fields, lambda: ts_state.state))

    stepper = LSRK4TimeStepper()
    t = 0

    bbox = discr.mesh.bounding_box()
    z_period = bbox[1][2] - bbox[0][2]

    def check_result():
        from hedge.tools import cross

        deriv_dt = 1e-12

        dim = discr.dimensions
        true_x = setup.positions(t)
        true_v = setup.velocities(t)
        true_f = [(p2 - p1) / (2 * deriv_dt) for p1, p2 in zip(
            setup.momenta(t - deriv_dt), setup.momenta(t + deriv_dt))]

        state = ts_state.state

        from pyrticle.tools import NumberShiftableVector
        vis_info = state.vis_listener.particle_vis_map
        sim_x = state.positions
        sim_v = method.velocities(state)
        sim_f = NumberShiftableVector.unwrap(vis_info["mag_force"] +
                                             vis_info["el_force"])
        sim_el_f = NumberShiftableVector.unwrap(vis_info["el_force"])
        sim_mag_f = NumberShiftableVector.unwrap(vis_info["mag_force"])

        local_e = setup.e()
        local_b = units.MU0 * setup.h()

        x_err = 0
        v_err = 0
        f_err = 0

        for i in range(len(state)):
            #real_f = numpy.array(cross(sim_v, setup.charge*local_b)) + setup.charge*local_e

            my_true_x = true_x[i]
            my_true_x[2] = my_true_x[2] % z_period
            if False and i == 0:
                #print "particle %d" % i
                print "pos:", la.norm(true_x[i] - sim_x[i]) / la.norm(
                    true_x[i])
                #print "vel:", la.norm(true_v[i]-sim_v[i])/la.norm(true_v[i])
                #print "force:", la.norm(true_f[i]-sim_f[i])/la.norm(true_f[i])
                print "pos:", true_x[i], sim_x[i]
                #print "vel:", true_v[i], sim_v[i]
                #print "force:", true_f[i], sim_f[i]
                #print "forces%d:..." % i, sim_el_f[i], sim_mag_f[i]
                #print "acc%d:" % i, la.norm(a-sim_a)
                #u = numpy.vstack((v, sim_v, f, sim_f, real_f))
                #print "acc%d:\n%s" % (i, u)
                #raw_input()

            def rel_err(sim, true):
                return la.norm(true - sim) / la.norm(true)

            x_err = max(x_err, rel_err(sim_x[i], my_true_x))
            v_err = max(v_err, rel_err(sim_v[i], true_v[i]))
            f_err = max(f_err, rel_err(sim_f[i], true_f[i]))

        return x_err, v_err, f_err

    # make sure verbose-vis fields are filled
    from pyrticle.cloud import TimesteppablePicState
    ts_state = TimesteppablePicState(method, state)
    del state

    rhs(t, ts_state)

    errors = (0, 0, 0)

    for step in xrange(nsteps):
        if step % int(setup.nsteps() / 300) == 0:
            errors = tuple(
                max(old_err, new_err)
                for old_err, new_err in zip(errors, check_result()))

            if visualize:
                visf = vis.make_file("%s-%04d" % (casename, step))

                method.add_to_vis(vis, visf, ts_state.state, time=t, step=step)

                if True:
                    vis.add_data(visf, [
                        ("e", e),
                        ("h", h),
                    ],
                                 time=t,
                                 step=step)
                else:
                    vis.add_data(visf, [], time=t, step=step)
                visf.close()

        method.upkeep(ts_state.state)

        ts_state = stepper(ts_state, t, dt, rhs)

        t += dt

    assert errors[0] < 2e-12, casename + "-pos"
    assert errors[1] < 2e-13, casename + "-vel"
    assert errors[2] < 2e-4, casename + "-acc"

    vis.close()
Example #4
0
def main():
    from hedge.backends import guess_run_context
    rcon = guess_run_context(["cuda"])

    if rcon.is_head_rank:
        mesh = make_boxmesh()
        #from hedge.mesh import make_rect_mesh
        #mesh = make_rect_mesh(
        #       boundary_tagger=lambda fvi, el, fn, all_v: ["inflow"])
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [3]:
        from pytools import add_python_path_relative_to_script
        add_python_path_relative_to_script("..")

        from gas_dynamics_initials import UniformMachFlow
        box = UniformMachFlow(angle_of_attack=0)

        from hedge.models.gas_dynamics import GasDynamicsOperator
        op = GasDynamicsOperator(dimensions=3,
                gamma=box.gamma, mu=box.mu,
                prandtl=box.prandtl, spec_gas_const=box.spec_gas_const,
                bc_inflow=box, bc_outflow=box, bc_noslip=box,
                inflow_tag="inflow", outflow_tag="outflow", noslip_tag="noslip")

        discr = rcon.make_discretization(mesh_data, order=order,
                        debug=[
                            #"cuda_no_plan",
                            #"cuda_dump_kernels",
                            #"dump_dataflow_graph",
                            #"dump_optemplate_stages",
                            #"dump_dataflow_graph",
                            #"print_op_code",
                            "cuda_no_plan_el_local",
                            ],
                        default_scalar_type=numpy.float32,
                        tune_for=op.op_template())

        from hedge.visualization import SiloVisualizer, VtkVisualizer  # noqa
        #vis = VtkVisualizer(discr, rcon, "shearflow-%d" % order)
        vis = SiloVisualizer(discr, rcon)

        fields = box.volume_interpolant(0, discr)

        navierstokes_ex = op.bind(discr)

        max_eigval = [0]

        def rhs(t, q):
            ode_rhs, speed = navierstokes_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs

        rhs(0, fields)

        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements=", len(mesh.elements)

        from hedge.timestep import RK4TimeStepper
        stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from pytools.log import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        logmgr = LogManager("navierstokes-%d.dat" % order, "w", rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        from pytools.log import LogQuantity

        class ChangeSinceLastStep(LogQuantity):
            """Records the change of a variable between a time step and the previous
               one"""

            def __init__(self, name="change"):
                LogQuantity.__init__(self, name, "1", "Change since last time step")

                self.old_fields = 0

            def __call__(self):
                result = discr.norm(fields - self.old_fields)
                self.old_fields = fields
                return result

        logmgr.add_quantity(ChangeSinceLastStep())

        # timestep loop -------------------------------------------------------
        try:
            from hedge.timestep import times_and_steps
            step_it = times_and_steps(
                    final_time=200,
                    #max_steps=500,
                    logmgr=logmgr,
                    max_dt_getter=lambda t: op.estimate_timestep(discr,
                        stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            for step, t, dt in step_it:
                if step % 200 == 0:
                #if False:
                    visf = vis.make_file("box-%d-%06d" % (order, step))

                    #rhs_fields = rhs(t, fields)

                    vis.add_data(visf,
                            [
                                ("rho", discr.convert_volume(
                                    op.rho(fields), kind="numpy")),
                                ("e", discr.convert_volume(
                                    op.e(fields), kind="numpy")),
                                ("rho_u", discr.convert_volume(
                                    op.rho_u(fields), kind="numpy")),
                                ("u", discr.convert_volume(
                                    op.u(fields), kind="numpy")),

                                # ("rhs_rho", discr.convert_volume(
                                #     op.rho(rhs_fields), kind="numpy")),
                                # ("rhs_e", discr.convert_volume(
                                #     op.e(rhs_fields), kind="numpy")),
                                # ("rhs_rho_u", discr.convert_volume(
                                #     op.rho_u(rhs_fields), kind="numpy")),
                                ],
                            expressions=[
                                ("p", "(0.4)*(e- 0.5*(rho_u*u))"),
                                ],
                            time=t, step=step
                            )
                    visf.close()

                fields = stepper(fields, t, dt, rhs)

        finally:
            vis.close()
            logmgr.save()
            discr.close()
Example #5
0
def optimize_shape_bandwidth(method, state, analytic_rho, exponent):
    discr = method.discretization
    rec = method.depositor

    adv_radius = method.mesh_data.advisable_particle_radius()
    radii = [adv_radius * 2**i for i in numpy.linspace(-4, 2, 50)]

    def set_radius(r):
        method.depositor.set_shape_function(
            state,
            method.get_shape_function_class()(
                r,
                method.mesh_data.dimensions,
                exponent,
            ))

    tried_radii = []
    l1_errors = []

    debug = "shape_bw" in method.debug
    visualize = set(["shape_bw", "vis_files"]) <= method.debug

    if visualize:
        from hedge.visualization import SiloVisualizer
        vis = SiloVisualizer(discr)

    import sys

    if debug:
        sys.stdout.write("optimizing shape bw (%d attempts): " % len(radii))
    for step, radius in enumerate(radii):
        if debug:
            sys.stdout.write("%d." % step)
            sys.stdout.flush()

        try:
            try:
                method.set_ignore_core_warnings(True)
                set_radius(radius)
            except RuntimeError, re:
                if "particle mass is zero" in str(re):
                    continue
                else:
                    raise
        finally:
            method.set_ignore_core_warnings(False)

        state.derived_quantity_cache.clear()

        try:
            try:
                method.set_ignore_core_warnings(True)
                rec_rho = method.deposit_rho(state)
            except RuntimeError, re:
                if "particle mass is zero" in str(re):
                    continue
                else:
                    raise
        finally:
            method.set_ignore_core_warnings(False)

        tried_radii.append(radius)
        l1_errors.append(discr.integral(numpy.abs(rec_rho - analytic_rho)))

        if visualize:
            visf = vis.make_file("bwopt-%04d" % step)
            method.add_to_vis(vis, visf, state, time=radius, step=step)
            vis.add_data(
                visf,
                [
                    ("rho", rec_rho),
                    #("j", method.deposit_j(state)),
                    ("rho_analytic", analytic_rho),
                ],
                expressions=[("rho_diff", "rho-rho_analytic")],
                time=radius,
                step=step)

            try:
                rec.visualize_grid_quantities
            except AttributeError:
                pass
            else:
                rec.visualize_grid_quantities(visf, [
                    ("rho_grid", rec.deposit_grid_rho(state)),
                    ("j_grid",
                     rec.deposit_grid_j(state, method.velocities(state))),
                    ("rho_resid",
                     rec.remap_residual(rec.deposit_grid_rho(state))),
                ])

            visf.close()

    if debug:
        sys.stdout.write("\n")
        sys.stdout.flush()

    if visualize:
        vis.close()

    from pytools import argmin
    min_idx = argmin(l1_errors)
    min_rad = tried_radii[min_idx]
    min_l1_error = l1_errors[min_idx]

    rel_l1_error = abs(min_l1_error / discr.integral(analytic_rho))
    if rel_l1_error > 0.1:
        from warnings import warn
        warn("Charge density is very poorly resolved (rel L1 error=%g)" %
             rel_l1_error)

    def is_local_minimum(list, i):
        if i == 0:
            return False
        elif i == len(list) - 1:
            return False
        else:
            return list[i] < list[i - 1] and list[i] < list[i + 1]

    local_minima = [
        idx for idx in range(len(tried_radii))
        if is_local_minimum(l1_errors, idx)
    ]

    chosen_idx = max(local_minima)
    chosen_rad = tried_radii[chosen_idx]

    if "shape_bw" in method.debug:
        chosen_l1_error = l1_errors[chosen_idx]
        print "radius: guessed optimum=%g, found optimum=%g, chosen=%g" % (
            adv_radius, min_rad, chosen_rad)
        print "radius: optimum l1 error=%g, chosen l1 error=%g" % (
            min_l1_error, chosen_l1_error)

    set_radius(chosen_rad)
    state.derived_quantity_cache.clear()

    if set(["interactive", "shape_bw"]) < method.debug:
        from pylab import semilogx, show
        semilogx(tried_radii, l1_errors)
        show()
Example #6
0
def main():
    from hedge.backends import guess_run_context
    rcon = guess_run_context(
    #["cuda"]
    )

    from hedge.tools import EOCRecorder, to_obj_array
    eoc_rec = EOCRecorder()

    def boundary_tagger(vertices, el, face_nr, all_v):
        return ["inflow"]

    if rcon.is_head_rank:
        from hedge.mesh import make_rect_mesh, \
                               make_centered_regular_rect_mesh
        #mesh = make_rect_mesh((0,0), (10,1), max_area=0.01)
        refine = 1
        mesh = make_centered_regular_rect_mesh((0,0), (10,1), n=(20,4),
                            #periodicity=(True, False),
                            post_refine_factor=refine,
                            boundary_tagger=boundary_tagger)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [3]:
        discr = rcon.make_discretization(mesh_data, order=order,
                        default_scalar_type=numpy.float64)

        from hedge.visualization import SiloVisualizer, VtkVisualizer
        #vis = VtkVisualizer(discr, rcon, "shearflow-%d" % order)
        vis = SiloVisualizer(discr, rcon)

        shearflow = SteadyShearFlow()
        fields = shearflow.volume_interpolant(0, discr)
        gamma, mu, prandtl, spec_gas_const = shearflow.properties()

        from hedge.models.gas_dynamics import GasDynamicsOperator
        op = GasDynamicsOperator(dimensions=2, gamma=gamma, mu=mu,
                prandtl=prandtl, spec_gas_const=spec_gas_const,
                bc_inflow=shearflow, bc_outflow=shearflow, bc_noslip=shearflow,
                inflow_tag="inflow", outflow_tag="outflow", noslip_tag="noslip")

        navierstokes_ex = op.bind(discr)

        max_eigval = [0]
        def rhs(t, q):
            ode_rhs, speed = navierstokes_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs

        # needed to get first estimate of maximum eigenvalue
        rhs(0, fields)

        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements=", len(mesh.elements)

        from hedge.timestep import RK4TimeStepper
        stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from pytools.log import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        logmgr = LogManager("navierstokes-cpu-%d-%d.dat" % (order, refine),
                            "w", rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # timestep loop -------------------------------------------------------
        try:
            from hedge.timestep import times_and_steps
            step_it = times_and_steps(
                    final_time=0.3,
                    #max_steps=500,
                    logmgr=logmgr,
                    max_dt_getter=lambda t: op.estimate_timestep(discr,
                        stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            for step, t, dt in step_it:
                if step % 10 == 0:
                #if False:
                    visf = vis.make_file("shearflow-%d-%04d" % (order, step))

                    #true_fields = shearflow.volume_interpolant(t, discr)

                    from pyvisfile.silo import DB_VARTYPE_VECTOR
                    vis.add_data(visf,
                            [
                                ("rho", discr.convert_volume(op.rho(fields), kind="numpy")),
                                ("e", discr.convert_volume(op.e(fields), kind="numpy")),
                                ("rho_u", discr.convert_volume(op.rho_u(fields), kind="numpy")),
                                ("u", discr.convert_volume(op.u(fields), kind="numpy")),

                                #("true_rho", discr.convert_volume(op.rho(true_fields), kind="numpy")),
                                #("true_e", discr.convert_volume(op.e(true_fields), kind="numpy")),
                                #("true_rho_u", discr.convert_volume(op.rho_u(true_fields), kind="numpy")),
                                #("true_u", discr.convert_volume(op.u(true_fields), kind="numpy")),
                                ],
                            expressions=[
                                #("diff_rho", "rho-true_rho"),
                                #("diff_e", "e-true_e"),
                                #("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),

                                ("p", "0.4*(e- 0.5*(rho_u*u))"),
                                ],
                            time=t, step=step
                            )
                    visf.close()

                fields = stepper(fields, t, dt, rhs)

            true_fields = shearflow.volume_interpolant(t, discr)
            l2_error = discr.norm(op.u(fields)-op.u(true_fields))
            eoc_rec.add_data_point(order, l2_error)
            print
            print eoc_rec.pretty_print("P.Deg.", "L2 Error")

            logmgr.set_constant("l2_error", l2_error)

        finally:
            vis.close()
            logmgr.save()
            discr.close()
Example #7
0
def main():
    from hedge.backends import guess_run_context
    rcon = guess_run_context( ["cuda", "mpi"])

    if rcon.is_head_rank:
        mesh = make_wingmesh()
        #from hedge.mesh import make_rect_mesh
        #mesh = make_rect_mesh(
        #       boundary_tagger=lambda fvi, el, fn, all_v: ["inflow"])
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [3]:
        from pytools import add_python_path_relative_to_script
        add_python_path_relative_to_script("..")

        from gas_dynamics_initials import UniformMachFlow
        wing = UniformMachFlow(angle_of_attack=0)

        from hedge.models.gas_dynamics import GasDynamicsOperator
        op = GasDynamicsOperator(dimensions=3,
                gamma=wing.gamma, mu=wing.mu,
                prandtl=wing.prandtl, spec_gas_const=wing.spec_gas_const,
                bc_inflow=wing, bc_outflow=wing, bc_noslip=wing,
                inflow_tag="inflow", outflow_tag="outflow", noslip_tag="noslip")

        discr = rcon.make_discretization(mesh_data, order=order,
                        debug=["cuda_no_plan",
                            #"cuda_dump_kernels",
                            #"dump_dataflow_graph",
                            #"dump_optemplate_stages",
                            #"dump_dataflow_graph",
                            #"print_op_code"
                            "cuda_no_metis",
                            ],
                        default_scalar_type=numpy.float64,
                        tune_for=op.op_template())

        from hedge.visualization import SiloVisualizer, VtkVisualizer
        #vis = VtkVisualizer(discr, rcon, "shearflow-%d" % order)
        vis = SiloVisualizer(discr, rcon)

        fields = wing.volume_interpolant(0, discr)

        navierstokes_ex = op.bind(discr)

        max_eigval = [0]
        def rhs(t, q):
            ode_rhs, speed = navierstokes_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs
        rhs(0, fields)

        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements=", len(mesh.elements)

        from hedge.timestep import RK4TimeStepper
        stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from pytools.log import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        logmgr = LogManager("navierstokes-%d.dat" % order, "w", rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # timestep loop -------------------------------------------------------
        try:
            from hedge.timestep import times_and_steps
            step_it = times_and_steps(
                    final_time=200,
                    #max_steps=500,
                    logmgr=logmgr,
                    max_dt_getter=lambda t: 0.6 * op.estimate_timestep(discr,
                        stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            for step, t, dt in step_it:
                if step % 200 == 0:
                #if False:
                    visf = vis.make_file("wing-%d-%06d" % (order, step))

                    #rhs_fields = rhs(t, fields)

                    from pyvisfile.silo import DB_VARTYPE_VECTOR
                    from hedge.discretization import ones_on_boundary
                    vis.add_data(visf,
                            [
                                ("rho", discr.convert_volume(op.rho(fields), kind="numpy")),
                                ("e", discr.convert_volume(op.e(fields), kind="numpy")),
                                ("rho_u", discr.convert_volume(op.rho_u(fields), kind="numpy")),
                                ("u", discr.convert_volume(op.u(fields), kind="numpy")),

                                #("rhs_rho", discr.convert_volume(op.rho(rhs_fields), kind="numpy")),
                                #("rhs_e", discr.convert_volume(op.e(rhs_fields), kind="numpy")),
                                #("rhs_rho_u", discr.convert_volume(op.rho_u(rhs_fields), kind="numpy")),
                                ],
                            expressions=[
                                ("p", "(0.4)*(e- 0.5*(rho_u*u))"),
                                ],
                            time=t, step=step
                            )
                    visf.close()

                fields = stepper(fields, t, dt, rhs)
                t += dt

        finally:
            vis.close()
            logmgr.save()
            discr.close()
Example #8
0
    def inner_run(self): 
        t = 0
        
        setup = self.setup
        setup.hook_startup(self)

        vis_order = setup.vis_order
        if vis_order is None:
            vis_order = setup.element_order

        if vis_order != setup.element_order:
            vis_discr = self.rcon.make_discretization(self.discr.mesh, 
                            order=vis_order, debug=setup.dg_debug)

            from hedge.discretization import Projector
            vis_proj = Projector(self.discr, vis_discr)
        else:
            vis_discr = self.discr

            def vis_proj(f):
                return f

        from hedge.visualization import SiloVisualizer
        vis = SiloVisualizer(vis_discr)

        fields = self.fields
        self.observer.set_fields_and_state(fields, self.state)

        from hedge.tools import make_obj_array
        from pyrticle.cloud import TimesteppablePicState

        def visualize(observer):
            sub_timer = self.vis_timer.start_sub_timer()
            import os.path
            visf = vis.make_file(os.path.join(
                setup.output_path, setup.vis_pattern % step))

            self.method.add_to_vis(vis, visf, observer.state, time=t, step=step)
            vis.add_data(visf, 
                    [(name, vis_proj(fld))
                        for name, fld in setup.hook_vis_quantities(observer)],
                    time=t, step=step)
            setup.hook_visualize(self, vis, visf, observer)

            visf.close()
            sub_timer.stop().submit()

        from hedge.timestep.multirate_ab import TwoRateAdamsBashforthTimeStepper 
        if not isinstance(self.stepper, TwoRateAdamsBashforthTimeStepper): 
            def rhs(t, fields_and_state):
                fields, ts_state = fields_and_state
                state_f = lambda: ts_state.state
                fields_f = lambda: fields

                fields_rhs = (
                        self.f_rhs_calculator(t, fields_f, state_f)
                        + self.p2f_rhs_calculator(t, fields_f, state_f))
                state_rhs = (
                        self.p_rhs_calculator(t, fields_f, state_f)
                        + self.f2p_rhs_calculator(t, fields_f, state_f))

                return make_obj_array([fields_rhs, state_rhs])
            step_args = (self.dt, rhs)
        else:
            def add_unwrap(rhs):
                def unwrapping_rhs(t, fields, ts_state):
                    return rhs(t, fields, lambda: ts_state().state)
                return unwrapping_rhs

            step_args = ((
                    add_unwrap(self.f_rhs_calculator),
                    add_unwrap(self.p2f_rhs_calculator),
                    add_unwrap(self.f2p_rhs_calculator),
                    add_unwrap(self.p_rhs_calculator),
                    ),)

        y = make_obj_array([
            fields, 
            TimesteppablePicState(self.method, self.state)
            ])
        del self.state

        try:
            from hedge.timestep import times_and_steps
            step_it = times_and_steps(
                    max_steps=self.nsteps,
                    logmgr=self.logmgr,
                    max_dt_getter=lambda t: self.dt)

            for step, t, dt in step_it:
                self.method.upkeep(y[1].state)

                if step % setup.vis_interval == 0:
                    visualize(self.observer)

                y = self.stepper(y, t, *step_args)

                fields, ts_state = y
                self.observer.set_fields_and_state(fields, ts_state.state)

                setup.hook_after_step(self, self.observer)
        finally:
            vis.close()
            self.discr.close()
            self.logmgr.save()

        setup.hook_when_done(self)
Example #9
0
def run_setup(units, casename, setup, discr, pusher, visualize=False):
    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    from hedge.visualization import SiloVisualizer
    from hedge.models.em import MaxwellOperator

    vis = SiloVisualizer(discr)

    from pyrticle.cloud import PicMethod
    from pyrticle.deposition.shape import ShapeFunctionDepositor
    method = PicMethod(discr, units, 
            ShapeFunctionDepositor(),
            pusher(),
            3, 3, debug=set(["verbose_vis"]))

    e, h = setup.fields(discr)
    b = units.MU0 * h

    init_positions = setup.positions(0)
    init_velocities = setup.velocities(0)

    nparticles = len(init_positions)

    state = method.make_state()
    method.add_particles(state,
            zip(init_positions, init_velocities, 
                nparticles * [setup.charge],
                nparticles  * [units.EL_MASS],
                ),
            nparticles)

    final_time = setup.final_time()
    nsteps = setup.nsteps()
    dt = final_time/nsteps

    # timestepping ------------------------------------------------------------
    from hedge.models.em import MaxwellOperator
    max_op = MaxwellOperator(
            epsilon=units.EPSILON0, 
            mu=units.MU0, 
            flux_type=1)

    fields = max_op.assemble_eh(e, h)

    from pyrticle.cloud import \
            FieldToParticleRhsCalculator, \
            ParticleRhsCalculator
    p_rhs_calculator = ParticleRhsCalculator(method, max_op)
    f2p_rhs_calculator = FieldToParticleRhsCalculator(method, max_op)

    def rhs(t, ts_state):
        return (p_rhs_calculator(t, lambda: fields, lambda: ts_state.state)
                + f2p_rhs_calculator(t, lambda: fields, lambda: ts_state.state))

    stepper = LSRK4TimeStepper()
    t = 0

    bbox = discr.mesh.bounding_box()
    z_period = bbox[1][2] - bbox[0][2]

    def check_result():
        from hedge.tools import cross

        deriv_dt = 1e-12

        dim = discr.dimensions
        true_x = setup.positions(t)
        true_v = setup.velocities(t)
        true_f = [(p2-p1)/(2*deriv_dt)
                for p1, p2 in zip(setup.momenta(t-deriv_dt), setup.momenta(t+deriv_dt))]

        state = ts_state.state

        from pyrticle.tools import NumberShiftableVector
        vis_info = state.vis_listener.particle_vis_map
        sim_x = state.positions
        sim_v = method.velocities(state)
        sim_f = NumberShiftableVector.unwrap(
                vis_info["mag_force"] + vis_info["el_force"])
        sim_el_f = NumberShiftableVector.unwrap(vis_info["el_force"])
        sim_mag_f = NumberShiftableVector.unwrap(vis_info["mag_force"])

        local_e = setup.e()
        local_b = units.MU0 * setup.h()

        x_err = 0
        v_err = 0
        f_err = 0

        for i in range(len(state)):
            #real_f = numpy.array(cross(sim_v, setup.charge*local_b)) + setup.charge*local_e

            my_true_x = true_x[i]
            my_true_x[2] = my_true_x[2] % z_period
            if False and i == 0:
                #print "particle %d" % i
                print "pos:", la.norm(true_x[i]-sim_x[i])/la.norm(true_x[i])
                #print "vel:", la.norm(true_v[i]-sim_v[i])/la.norm(true_v[i])
                #print "force:", la.norm(true_f[i]-sim_f[i])/la.norm(true_f[i])
                print "pos:", true_x[i], sim_x[i]
                #print "vel:", true_v[i], sim_v[i]
                #print "force:", true_f[i], sim_f[i]
                #print "forces%d:..." % i, sim_el_f[i], sim_mag_f[i]
                #print "acc%d:" % i, la.norm(a-sim_a)
                #u = numpy.vstack((v, sim_v, f, sim_f, real_f))
                #print "acc%d:\n%s" % (i, u)
                #raw_input()

            def rel_err(sim, true):
                return la.norm(true-sim)/la.norm(true)

            x_err = max(x_err, rel_err(sim_x[i], my_true_x))
            v_err = max(v_err, rel_err(sim_v[i], true_v[i]))
            f_err = max(f_err, rel_err(sim_f[i], true_f[i]))

        return x_err, v_err, f_err

    # make sure verbose-vis fields are filled
    from pyrticle.cloud import TimesteppablePicState
    ts_state = TimesteppablePicState(method, state)
    del state

    rhs(t, ts_state)

    errors = (0, 0, 0)

    for step in xrange(nsteps):
        if step % int(setup.nsteps()/300) == 0:
            errors = tuple(
                    max(old_err, new_err) 
                    for old_err, new_err in zip(errors, check_result()))

            if visualize:
                visf = vis.make_file("%s-%04d" % (casename, step))

                method.add_to_vis(vis, visf, ts_state.state, time=t, step=step)

                if True:
                    vis.add_data(visf, [ ("e", e), ("h", h), ],
                            time=t, step=step)
                else:
                    vis.add_data(visf, [], time=t, step=step)
                visf.close()

        method.upkeep(ts_state.state)

        ts_state = stepper(ts_state, t, dt, rhs)

        t += dt

    assert errors[0] < 2e-12, casename+"-pos"
    assert errors[1] < 2e-13, casename+"-vel"
    assert errors[2] < 2e-4, casename+"-acc"

    vis.close()
Example #10
0
def main():
    from hedge.backends import guess_run_context
    rcon = guess_run_context(["cuda"])

    if rcon.is_head_rank:
        mesh = make_boxmesh()
        #from hedge.mesh import make_rect_mesh
        #mesh = make_rect_mesh(
        #       boundary_tagger=lambda fvi, el, fn, all_v: ["inflow"])
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [3]:
        from pytools import add_python_path_relative_to_script
        add_python_path_relative_to_script("..")

        from gas_dynamics_initials import UniformMachFlow
        box = UniformMachFlow(angle_of_attack=0)

        from hedge.models.gas_dynamics import GasDynamicsOperator
        op = GasDynamicsOperator(dimensions=3,
                                 gamma=box.gamma,
                                 mu=box.mu,
                                 prandtl=box.prandtl,
                                 spec_gas_const=box.spec_gas_const,
                                 bc_inflow=box,
                                 bc_outflow=box,
                                 bc_noslip=box,
                                 inflow_tag="inflow",
                                 outflow_tag="outflow",
                                 noslip_tag="noslip")

        discr = rcon.make_discretization(
            mesh_data,
            order=order,
            debug=[
                #"cuda_no_plan",
                #"cuda_dump_kernels",
                #"dump_dataflow_graph",
                #"dump_optemplate_stages",
                #"dump_dataflow_graph",
                #"print_op_code",
                "cuda_no_plan_el_local",
            ],
            default_scalar_type=numpy.float32,
            tune_for=op.op_template())

        from hedge.visualization import SiloVisualizer, VtkVisualizer  # noqa
        #vis = VtkVisualizer(discr, rcon, "shearflow-%d" % order)
        vis = SiloVisualizer(discr, rcon)

        fields = box.volume_interpolant(0, discr)

        navierstokes_ex = op.bind(discr)

        max_eigval = [0]

        def rhs(t, q):
            ode_rhs, speed = navierstokes_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs

        rhs(0, fields)

        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements=", len(mesh.elements)

        from hedge.timestep import RK4TimeStepper
        stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from pytools.log import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        logmgr = LogManager("navierstokes-%d.dat" % order, "w",
                            rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        from pytools.log import LogQuantity

        class ChangeSinceLastStep(LogQuantity):
            """Records the change of a variable between a time step and the previous
               one"""
            def __init__(self, name="change"):
                LogQuantity.__init__(self, name, "1",
                                     "Change since last time step")

                self.old_fields = 0

            def __call__(self):
                result = discr.norm(fields - self.old_fields)
                self.old_fields = fields
                return result

        logmgr.add_quantity(ChangeSinceLastStep())

        # timestep loop -------------------------------------------------------
        try:
            from hedge.timestep import times_and_steps
            step_it = times_and_steps(
                final_time=200,
                #max_steps=500,
                logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(
                    discr, stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            for step, t, dt in step_it:
                if step % 200 == 0:
                    #if False:
                    visf = vis.make_file("box-%d-%06d" % (order, step))

                    #rhs_fields = rhs(t, fields)

                    vis.add_data(
                        visf,
                        [
                            ("rho",
                             discr.convert_volume(op.rho(fields),
                                                  kind="numpy")),
                            ("e",
                             discr.convert_volume(op.e(fields), kind="numpy")),
                            ("rho_u",
                             discr.convert_volume(op.rho_u(fields),
                                                  kind="numpy")),
                            ("u",
                             discr.convert_volume(op.u(fields), kind="numpy")),

                            # ("rhs_rho", discr.convert_volume(
                            #     op.rho(rhs_fields), kind="numpy")),
                            # ("rhs_e", discr.convert_volume(
                            #     op.e(rhs_fields), kind="numpy")),
                            # ("rhs_rho_u", discr.convert_volume(
                            #     op.rho_u(rhs_fields), kind="numpy")),
                        ],
                        expressions=[
                            ("p", "(0.4)*(e- 0.5*(rho_u*u))"),
                        ],
                        time=t,
                        step=step)
                    visf.close()

                fields = stepper(fields, t, dt, rhs)

        finally:
            vis.close()
            logmgr.save()
            discr.close()
Example #11
0
def main():
    import logging
    logging.basicConfig(level=logging.INFO)

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    if rcon.is_head_rank:
        if True:
            mesh = make_squaremesh()
        else:
            from hedge.mesh import make_rect_mesh
            mesh = make_rect_mesh(
                   boundary_tagger=lambda fvi, el, fn, all_v: ["inflow"],
                   max_area=0.1)

        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    from pytools import add_python_path_relative_to_script
    add_python_path_relative_to_script(".")

    for order in [3]:
        from gas_dynamics_initials import UniformMachFlow
        square = UniformMachFlow(gaussian_pulse_at=numpy.array([-2, 2]),
                pulse_magnitude=0.003)

        from hedge.models.gas_dynamics import (
                GasDynamicsOperator,
                GammaLawEOS)

        op = GasDynamicsOperator(dimensions=2,
                equation_of_state=GammaLawEOS(square.gamma), mu=square.mu,
                prandtl=square.prandtl, spec_gas_const=square.spec_gas_const,
                bc_inflow=square, bc_outflow=square, bc_noslip=square,
                inflow_tag="inflow", outflow_tag="outflow", noslip_tag="noslip")

        discr = rcon.make_discretization(mesh_data, order=order,
                        debug=["cuda_no_plan",
                            "cuda_dump_kernels",
                            #"dump_dataflow_graph",
                            #"dump_optemplate_stages",
                            #"dump_dataflow_graph",
                            #"dump_op_code"
                            #"cuda_no_plan_el_local"
                            ],
                        default_scalar_type=numpy.float64,
                        tune_for=op.op_template(),
                        quad_min_degrees={
                            "gasdyn_vol": 3*order,
                            "gasdyn_face": 3*order,
                            }
                        )

        from hedge.visualization import SiloVisualizer, VtkVisualizer
        #vis = VtkVisualizer(discr, rcon, "shearflow-%d" % order)
        vis = SiloVisualizer(discr, rcon)

        from hedge.timestep.runge_kutta import (
                LSRK4TimeStepper, ODE23TimeStepper, ODE45TimeStepper)
        from hedge.timestep.dumka3 import Dumka3TimeStepper
        #stepper = LSRK4TimeStepper(dtype=discr.default_scalar_type,
                #vector_primitive_factory=discr.get_vector_primitive_factory())

        stepper = ODE23TimeStepper(dtype=discr.default_scalar_type,
                rtol=1e-6,
                vector_primitive_factory=discr.get_vector_primitive_factory())
        # Dumka works kind of poorly
        #stepper = Dumka3TimeStepper(dtype=discr.default_scalar_type,
                #rtol=1e-7, pol_index=2,
                #vector_primitive_factory=discr.get_vector_primitive_factory())

        #from hedge.timestep.dumka3 import Dumka3TimeStepper
        #stepper = Dumka3TimeStepper(3, rtol=1e-7)

        # diagnostics setup ---------------------------------------------------
        from pytools.log import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        logmgr = LogManager("cns-square-sp-%d.dat" % order, "w", rcon.communicator)

        add_run_info(logmgr)
        add_general_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        from pytools.log import LogQuantity
        class ChangeSinceLastStep(LogQuantity):
            """Records the change of a variable between a time step and the previous
               one"""

            def __init__(self, name="change"):
                LogQuantity.__init__(self, name, "1", "Change since last time step")

                self.old_fields = 0

            def __call__(self):
                result = discr.norm(fields - self.old_fields)
                self.old_fields = fields
                return result

        #logmgr.add_quantity(ChangeSinceLastStep())

        add_simulation_quantities(logmgr)
        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # filter setup ------------------------------------------------------------
        from hedge.discretization import Filter, ExponentialFilterResponseFunction
        mode_filter = Filter(discr,
                ExponentialFilterResponseFunction(min_amplification=0.95, order=6))

        # timestep loop -------------------------------------------------------
        fields = square.volume_interpolant(0, discr)

        navierstokes_ex = op.bind(discr)

        max_eigval = [0]
        def rhs(t, q):
            ode_rhs, speed = navierstokes_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs
        rhs(0, fields)

        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements=", len(mesh.elements)

        try:
            from hedge.timestep import times_and_steps
            step_it = times_and_steps(
                    final_time=1000,
                    #max_steps=500,
                    logmgr=logmgr,
                    max_dt_getter=lambda t: next_dt,
                    taken_dt_getter=lambda: taken_dt)

            model_stepper = LSRK4TimeStepper()
            next_dt = op.estimate_timestep(discr,
                    stepper=model_stepper, t=0, 
                    max_eigenvalue=max_eigval[0])

            for step, t, dt in step_it:
                #if (step % 10000 == 0): #and step < 950000) or (step % 500 == 0 and step > 950000):
                #if False:
                if step % 5 == 0:
                    visf = vis.make_file("square-%d-%06d" % (order, step))

                    #from pyvisfile.silo import DB_VARTYPE_VECTOR
                    vis.add_data(visf,
                            [
                                ("rho", discr.convert_volume(op.rho(fields), kind="numpy")),
                                ("e", discr.convert_volume(op.e(fields), kind="numpy")),
                                ("rho_u", discr.convert_volume(op.rho_u(fields), kind="numpy")),
                                ("u", discr.convert_volume(op.u(fields), kind="numpy")),
                            ],
                            expressions=[
                                ("p", "(0.4)*(e- 0.5*(rho_u*u))"),
                                ],
                            time=t, step=step
                            )
                    visf.close()

                if stepper.adaptive:
                    fields, t, taken_dt, next_dt = stepper(fields, t, dt, rhs)
                else:
                    taken_dt = dt
                    fields = stepper(fields, t, dt, rhs)
                    dt = op.estimate_timestep(discr,
                            stepper=model_stepper, t=0,
                            max_eigenvalue=max_eigval[0])

                #fields = mode_filter(fields)

        finally:
            vis.close()
            logmgr.save()
            discr.close()
Example #12
0
File: naca.py Project: gimac/hedge
def main():
    from hedge.backends import guess_run_context

    rcon = guess_run_context()

    if rcon.is_head_rank:
        mesh = make_nacamesh()
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    from pytools import add_python_path_relative_to_script

    add_python_path_relative_to_script("..")

    for order in [4]:
        from gas_dynamics_initials import UniformMachFlow

        uniform_flow = UniformMachFlow()

        from hedge.models.gas_dynamics import GasDynamicsOperator, GammaLawEOS

        op = GasDynamicsOperator(
            dimensions=2,
            equation_of_state=GammaLawEOS(uniform_flow.gamma),
            prandtl=uniform_flow.prandtl,
            spec_gas_const=uniform_flow.spec_gas_const,
            mu=uniform_flow.mu,
            bc_inflow=uniform_flow,
            bc_outflow=uniform_flow,
            bc_noslip=uniform_flow,
            inflow_tag="inflow",
            outflow_tag="outflow",
            noslip_tag="noslip",
        )

        discr = rcon.make_discretization(
            mesh_data,
            order=order,
            debug=[
                "cuda_no_plan",
                # "cuda_dump_kernels",
                # "dump_optemplate_stages",
                # "dump_dataflow_graph",
                # "print_op_code"
            ],
            default_scalar_type=numpy.float32,
            tune_for=op.op_template(),
        )

        from hedge.visualization import SiloVisualizer, VtkVisualizer

        # vis = VtkVisualizer(discr, rcon, "shearflow-%d" % order)
        vis = SiloVisualizer(discr, rcon)

        fields = uniform_flow.volume_interpolant(0, discr)

        navierstokes_ex = op.bind(discr)

        max_eigval = [0]

        def rhs(t, q):
            ode_rhs, speed = navierstokes_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs

        rhs(0, fields)

        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements=", len(mesh.elements)

        from hedge.timestep.runge_kutta import ODE23TimeStepper, LSRK4TimeStepper

        stepper = ODE23TimeStepper(
            dtype=discr.default_scalar_type, rtol=1e-6, vector_primitive_factory=discr.get_vector_primitive_factory()
        )
        # stepper = LSRK4TimeStepper(dtype=discr.default_scalar_type)

        # diagnostics setup ---------------------------------------------------
        from pytools.log import LogManager, add_general_quantities, add_simulation_quantities, add_run_info

        logmgr = LogManager("cns-naca-%d.dat" % order, "w", rcon.communicator)

        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        from pytools.log import LogQuantity

        class ChangeSinceLastStep(LogQuantity):
            """Records the change of a variable between a time step and the previous
               one"""

            def __init__(self, name="change"):
                LogQuantity.__init__(self, name, "1", "Change since last time step")

                self.old_fields = 0

            def __call__(self):
                result = discr.norm(fields - self.old_fields)
                self.old_fields = fields
                return result

        # logmgr.add_quantity(ChangeSinceLastStep())

        # filter setup-------------------------------------------------------------
        from hedge.discretization import Filter, ExponentialFilterResponseFunction

        mode_filter = Filter(discr, ExponentialFilterResponseFunction(min_amplification=0.9, order=4))
        # timestep loop -------------------------------------------------------

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        try:
            from hedge.timestep import times_and_steps

            step_it = times_and_steps(
                final_time=200,
                # max_steps=500,
                logmgr=logmgr,
                max_dt_getter=lambda t: next_dt,
                taken_dt_getter=lambda: taken_dt,
            )

            model_stepper = LSRK4TimeStepper()
            next_dt = op.estimate_timestep(discr, stepper=model_stepper, t=0, max_eigenvalue=max_eigval[0])

            for step, t, dt in step_it:
                if step % 10 == 0:
                    visf = vis.make_file("naca-%d-%06d" % (order, step))

                    from pyvisfile.silo import DB_VARTYPE_VECTOR

                    vis.add_data(
                        visf,
                        [
                            ("rho", discr.convert_volume(op.rho(fields), kind="numpy")),
                            ("e", discr.convert_volume(op.e(fields), kind="numpy")),
                            ("rho_u", discr.convert_volume(op.rho_u(fields), kind="numpy")),
                            ("u", discr.convert_volume(op.u(fields), kind="numpy")),
                            # ("true_rho", op.rho(true_fields)),
                            # ("true_e", op.e(true_fields)),
                            # ("true_rho_u", op.rho_u(true_fields)),
                            # ("true_u", op.u(true_fields)),
                            # ("rhs_rho", discr.convert_volume(op.rho(rhs_fields), kind="numpy")),
                            # ("rhs_e", discr.convert_volume(op.e(rhs_fields), kind="numpy")),
                            # ("rhs_rho_u", discr.convert_volume(op.rho_u(rhs_fields), kind="numpy")),
                        ],
                        expressions=[
                            # ("diff_rho", "rho-true_rho"),
                            # ("diff_e", "e-true_e"),
                            # ("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),
                            ("p", "(0.4)*(e- 0.5*(rho_u*u))")
                        ],
                        time=t,
                        step=step,
                    )
                    visf.close()

                fields, t, taken_dt, next_dt = stepper(fields, t, dt, rhs)
                fields = mode_filter(fields)

        finally:
            vis.close()
            logmgr.save()
            discr.close()
Example #13
0
def optimize_shape_bandwidth(method, state, analytic_rho, exponent):
    discr = method.discretization
    rec = method.depositor

    adv_radius = method.mesh_data.advisable_particle_radius()
    radii = [adv_radius*2**i
            for i in numpy.linspace(-4, 2, 50)]

    def set_radius(r):
        method.depositor.set_shape_function(
                state,
                method.get_shape_function_class()
                (r, method.mesh_data.dimensions, exponent,))

    tried_radii = []
    l1_errors = []

    debug = "shape_bw" in method.debug
    visualize = set(["shape_bw", "vis_files"]) <= method.debug

    if visualize:
        from hedge.visualization import SiloVisualizer
        vis = SiloVisualizer(discr)

    import sys

    if debug:
        sys.stdout.write("optimizing shape bw (%d attempts): " % len(radii))
    for step, radius in enumerate(radii):
        if debug:
            sys.stdout.write("%d." % step)
            sys.stdout.flush()

        try:
            try:
                method.set_ignore_core_warnings(True)
                set_radius(radius)
            except RuntimeError, re:
                if "particle mass is zero" in str(re):
                    continue
                else:
                    raise
        finally:
            method.set_ignore_core_warnings(False)

        state.derived_quantity_cache.clear()

        try:
            try:
                method.set_ignore_core_warnings(True)
                rec_rho = method.deposit_rho(state)
            except RuntimeError, re:
                if "particle mass is zero" in str(re):
                    continue
                else:
                    raise
        finally:
            method.set_ignore_core_warnings(False)

        tried_radii.append(radius)
        l1_errors.append(discr.integral(numpy.abs(rec_rho-analytic_rho)))

        if visualize:
            visf = vis.make_file("bwopt-%04d" % step)
            method.add_to_vis(vis, visf, state, time=radius, step=step)
            vis.add_data(visf, [
                ("rho", rec_rho),
                #("j", method.deposit_j(state)),
                ("rho_analytic", analytic_rho),
                ],
                expressions=[("rho_diff", "rho-rho_analytic")],
                time=radius, step=step)

            try:
                rec.visualize_grid_quantities
            except AttributeError:
                pass
            else:
                rec.visualize_grid_quantities(visf, [
                        ("rho_grid", rec.deposit_grid_rho(state)),
                        ("j_grid", rec.deposit_grid_j(state, method.velocities(state))),
                        ("rho_resid", rec.remap_residual(rec.deposit_grid_rho(state))),
                        ])

            visf.close()

    if debug:
        sys.stdout.write("\n")
        sys.stdout.flush()

    if visualize:
        vis.close()

    from pytools import argmin
    min_idx = argmin(l1_errors)
    min_rad = tried_radii[min_idx]
    min_l1_error = l1_errors[min_idx]

    rel_l1_error = abs(min_l1_error / discr.integral(analytic_rho))
    if rel_l1_error > 0.1:
        from warnings import warn
        warn("Charge density is very poorly resolved (rel L1 error=%g)" % rel_l1_error)

    def is_local_minimum(list, i):
        if i == 0:
            return False
        elif i == len(list)-1:
            return False
        else:
            return list[i] < list[i-1] and list[i] < list[i+1]

    local_minima = [idx for idx in range(len(tried_radii))
            if is_local_minimum(l1_errors, idx)]

    chosen_idx = max(local_minima)
    chosen_rad = tried_radii[chosen_idx]

    if "shape_bw" in method.debug:
        chosen_l1_error = l1_errors[chosen_idx]
        print "radius: guessed optimum=%g, found optimum=%g, chosen=%g" % (
                adv_radius, min_rad, chosen_rad)
        print "radius: optimum l1 error=%g, chosen l1 error=%g" % (
                min_l1_error, chosen_l1_error)

    set_radius(chosen_rad)
    state.derived_quantity_cache.clear()

    if set(["interactive", "shape_bw"]) < method.debug:
        from pylab import semilogx, show
        semilogx(tried_radii, l1_errors)
        show()
Example #14
0
    def inner_run(self):
        t = 0

        setup = self.setup
        setup.hook_startup(self)

        vis_order = setup.vis_order
        if vis_order is None:
            vis_order = setup.element_order

        if vis_order != setup.element_order:
            vis_discr = self.rcon.make_discretization(self.discr.mesh,
                                                      order=vis_order,
                                                      debug=setup.dg_debug)

            from hedge.discretization import Projector
            vis_proj = Projector(self.discr, vis_discr)
        else:
            vis_discr = self.discr

            def vis_proj(f):
                return f

        from hedge.visualization import SiloVisualizer
        vis = SiloVisualizer(vis_discr)

        fields = self.fields
        self.observer.set_fields_and_state(fields, self.state)

        from hedge.tools import make_obj_array
        from pyrticle.cloud import TimesteppablePicState

        def visualize(observer):
            sub_timer = self.vis_timer.start_sub_timer()
            import os.path
            visf = vis.make_file(
                os.path.join(setup.output_path, setup.vis_pattern % step))

            self.method.add_to_vis(vis,
                                   visf,
                                   observer.state,
                                   time=t,
                                   step=step)
            vis.add_data(
                visf, [(name, vis_proj(fld))
                       for name, fld in setup.hook_vis_quantities(observer)],
                time=t,
                step=step)
            setup.hook_visualize(self, vis, visf, observer)

            visf.close()
            sub_timer.stop().submit()

        from hedge.timestep.multirate_ab import TwoRateAdamsBashforthTimeStepper
        if not isinstance(self.stepper, TwoRateAdamsBashforthTimeStepper):

            def rhs(t, fields_and_state):
                fields, ts_state = fields_and_state
                state_f = lambda: ts_state.state
                fields_f = lambda: fields

                fields_rhs = (self.f_rhs_calculator(t, fields_f, state_f) +
                              self.p2f_rhs_calculator(t, fields_f, state_f))
                state_rhs = (self.p_rhs_calculator(t, fields_f, state_f) +
                             self.f2p_rhs_calculator(t, fields_f, state_f))

                return make_obj_array([fields_rhs, state_rhs])

            step_args = (self.dt, rhs)
        else:

            def add_unwrap(rhs):
                def unwrapping_rhs(t, fields, ts_state):
                    return rhs(t, fields, lambda: ts_state().state)

                return unwrapping_rhs

            step_args = ((
                add_unwrap(self.f_rhs_calculator),
                add_unwrap(self.p2f_rhs_calculator),
                add_unwrap(self.f2p_rhs_calculator),
                add_unwrap(self.p_rhs_calculator),
            ), )

        y = make_obj_array(
            [fields, TimesteppablePicState(self.method, self.state)])
        del self.state

        try:
            from hedge.timestep import times_and_steps
            step_it = times_and_steps(max_steps=self.nsteps,
                                      logmgr=self.logmgr,
                                      max_dt_getter=lambda t: self.dt)

            for step, t, dt in step_it:
                self.method.upkeep(y[1].state)

                if step % setup.vis_interval == 0:
                    visualize(self.observer)

                y = self.stepper(y, t, *step_args)

                fields, ts_state = y
                self.observer.set_fields_and_state(fields, ts_state.state)

                setup.hook_after_step(self, self.observer)
        finally:
            vis.close()
            self.discr.close()
            self.logmgr.save()

        setup.hook_when_done(self)
Example #15
0
def main():
    from hedge.backends import guess_run_context
    rcon = guess_run_context(["cuda", "mpi"])

    if rcon.is_head_rank:
        mesh = make_wingmesh()
        #from hedge.mesh import make_rect_mesh
        #mesh = make_rect_mesh(
        #       boundary_tagger=lambda fvi, el, fn, all_v: ["inflow"])
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [3]:
        from pytools import add_python_path_relative_to_script
        add_python_path_relative_to_script("..")

        from gas_dynamics_initials import UniformMachFlow
        wing = UniformMachFlow(angle_of_attack=0)

        from hedge.models.gas_dynamics import GasDynamicsOperator
        op = GasDynamicsOperator(dimensions=3,
                                 gamma=wing.gamma,
                                 mu=wing.mu,
                                 prandtl=wing.prandtl,
                                 spec_gas_const=wing.spec_gas_const,
                                 bc_inflow=wing,
                                 bc_outflow=wing,
                                 bc_noslip=wing,
                                 inflow_tag="inflow",
                                 outflow_tag="outflow",
                                 noslip_tag="noslip")

        discr = rcon.make_discretization(
            mesh_data,
            order=order,
            debug=[
                "cuda_no_plan",
                #"cuda_dump_kernels",
                #"dump_dataflow_graph",
                #"dump_optemplate_stages",
                #"dump_dataflow_graph",
                #"print_op_code"
                "cuda_no_metis",
            ],
            default_scalar_type=numpy.float64,
            tune_for=op.op_template())

        from hedge.visualization import SiloVisualizer, VtkVisualizer
        #vis = VtkVisualizer(discr, rcon, "shearflow-%d" % order)
        vis = SiloVisualizer(discr, rcon)

        fields = wing.volume_interpolant(0, discr)

        navierstokes_ex = op.bind(discr)

        max_eigval = [0]

        def rhs(t, q):
            ode_rhs, speed = navierstokes_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs

        rhs(0, fields)

        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements=", len(mesh.elements)

        from hedge.timestep import RK4TimeStepper
        stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from pytools.log import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        logmgr = LogManager("navierstokes-%d.dat" % order, "w",
                            rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # timestep loop -------------------------------------------------------
        try:
            from hedge.timestep import times_and_steps
            step_it = times_and_steps(
                final_time=200,
                #max_steps=500,
                logmgr=logmgr,
                max_dt_getter=lambda t: 0.6 * op.estimate_timestep(
                    discr, stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            for step, t, dt in step_it:
                if step % 200 == 0:
                    #if False:
                    visf = vis.make_file("wing-%d-%06d" % (order, step))

                    #rhs_fields = rhs(t, fields)

                    from pyvisfile.silo import DB_VARTYPE_VECTOR
                    from hedge.discretization import ones_on_boundary
                    vis.add_data(
                        visf,
                        [
                            ("rho",
                             discr.convert_volume(op.rho(fields),
                                                  kind="numpy")),
                            ("e",
                             discr.convert_volume(op.e(fields), kind="numpy")),
                            ("rho_u",
                             discr.convert_volume(op.rho_u(fields),
                                                  kind="numpy")),
                            ("u",
                             discr.convert_volume(op.u(fields), kind="numpy")),

                            #("rhs_rho", discr.convert_volume(op.rho(rhs_fields), kind="numpy")),
                            #("rhs_e", discr.convert_volume(op.e(rhs_fields), kind="numpy")),
                            #("rhs_rho_u", discr.convert_volume(op.rho_u(rhs_fields), kind="numpy")),
                        ],
                        expressions=[
                            ("p", "(0.4)*(e- 0.5*(rho_u*u))"),
                        ],
                        time=t,
                        step=step)
                    visf.close()

                fields = stepper(fields, t, dt, rhs)
                t += dt

        finally:
            vis.close()
            logmgr.save()
            discr.close()
Example #16
0
def main():
    import logging
    logging.basicConfig(level=logging.INFO)

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    if rcon.is_head_rank:
        if True:
            mesh = make_squaremesh()
        else:
            from hedge.mesh import make_rect_mesh
            mesh = make_rect_mesh(
                boundary_tagger=lambda fvi, el, fn, all_v: ["inflow"],
                max_area=0.1)

        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    from pytools import add_python_path_relative_to_script
    add_python_path_relative_to_script(".")

    for order in [3]:
        from gas_dynamics_initials import UniformMachFlow
        square = UniformMachFlow(gaussian_pulse_at=numpy.array([-2, 2]),
                                 pulse_magnitude=0.003)

        from hedge.models.gas_dynamics import (GasDynamicsOperator,
                                               GammaLawEOS)

        op = GasDynamicsOperator(dimensions=2,
                                 equation_of_state=GammaLawEOS(square.gamma),
                                 mu=square.mu,
                                 prandtl=square.prandtl,
                                 spec_gas_const=square.spec_gas_const,
                                 bc_inflow=square,
                                 bc_outflow=square,
                                 bc_noslip=square,
                                 inflow_tag="inflow",
                                 outflow_tag="outflow",
                                 noslip_tag="noslip")

        discr = rcon.make_discretization(
            mesh_data,
            order=order,
            debug=[
                "cuda_no_plan",
                "cuda_dump_kernels",
                #"dump_dataflow_graph",
                #"dump_optemplate_stages",
                #"dump_dataflow_graph",
                #"dump_op_code"
                #"cuda_no_plan_el_local"
            ],
            default_scalar_type=numpy.float64,
            tune_for=op.op_template(),
            quad_min_degrees={
                "gasdyn_vol": 3 * order,
                "gasdyn_face": 3 * order,
            })

        from hedge.visualization import SiloVisualizer, VtkVisualizer
        #vis = VtkVisualizer(discr, rcon, "shearflow-%d" % order)
        vis = SiloVisualizer(discr, rcon)

        from hedge.timestep.runge_kutta import (LSRK4TimeStepper,
                                                ODE23TimeStepper,
                                                ODE45TimeStepper)
        from hedge.timestep.dumka3 import Dumka3TimeStepper
        #stepper = LSRK4TimeStepper(dtype=discr.default_scalar_type,
        #vector_primitive_factory=discr.get_vector_primitive_factory())

        stepper = ODE23TimeStepper(
            dtype=discr.default_scalar_type,
            rtol=1e-6,
            vector_primitive_factory=discr.get_vector_primitive_factory())
        # Dumka works kind of poorly
        #stepper = Dumka3TimeStepper(dtype=discr.default_scalar_type,
        #rtol=1e-7, pol_index=2,
        #vector_primitive_factory=discr.get_vector_primitive_factory())

        #from hedge.timestep.dumka3 import Dumka3TimeStepper
        #stepper = Dumka3TimeStepper(3, rtol=1e-7)

        # diagnostics setup ---------------------------------------------------
        from pytools.log import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        logmgr = LogManager("cns-square-sp-%d.dat" % order, "w",
                            rcon.communicator)

        add_run_info(logmgr)
        add_general_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        from pytools.log import LogQuantity

        class ChangeSinceLastStep(LogQuantity):
            """Records the change of a variable between a time step and the previous
               one"""
            def __init__(self, name="change"):
                LogQuantity.__init__(self, name, "1",
                                     "Change since last time step")

                self.old_fields = 0

            def __call__(self):
                result = discr.norm(fields - self.old_fields)
                self.old_fields = fields
                return result

        #logmgr.add_quantity(ChangeSinceLastStep())

        add_simulation_quantities(logmgr)
        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # filter setup ------------------------------------------------------------
        from hedge.discretization import Filter, ExponentialFilterResponseFunction
        mode_filter = Filter(
            discr,
            ExponentialFilterResponseFunction(min_amplification=0.95, order=6))

        # timestep loop -------------------------------------------------------
        fields = square.volume_interpolant(0, discr)

        navierstokes_ex = op.bind(discr)

        max_eigval = [0]

        def rhs(t, q):
            ode_rhs, speed = navierstokes_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs

        rhs(0, fields)

        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements=", len(mesh.elements)

        try:
            from hedge.timestep import times_and_steps
            step_it = times_and_steps(
                final_time=1000,
                #max_steps=500,
                logmgr=logmgr,
                max_dt_getter=lambda t: next_dt,
                taken_dt_getter=lambda: taken_dt)

            model_stepper = LSRK4TimeStepper()
            next_dt = op.estimate_timestep(discr,
                                           stepper=model_stepper,
                                           t=0,
                                           max_eigenvalue=max_eigval[0])

            for step, t, dt in step_it:
                #if (step % 10000 == 0): #and step < 950000) or (step % 500 == 0 and step > 950000):
                #if False:
                if step % 5 == 0:
                    visf = vis.make_file("square-%d-%06d" % (order, step))

                    #from pyvisfile.silo import DB_VARTYPE_VECTOR
                    vis.add_data(visf, [
                        ("rho",
                         discr.convert_volume(op.rho(fields), kind="numpy")),
                        ("e", discr.convert_volume(op.e(fields),
                                                   kind="numpy")),
                        ("rho_u",
                         discr.convert_volume(op.rho_u(fields), kind="numpy")),
                        ("u", discr.convert_volume(op.u(fields),
                                                   kind="numpy")),
                    ],
                                 expressions=[
                                     ("p", "(0.4)*(e- 0.5*(rho_u*u))"),
                                 ],
                                 time=t,
                                 step=step)
                    visf.close()

                if stepper.adaptive:
                    fields, t, taken_dt, next_dt = stepper(fields, t, dt, rhs)
                else:
                    taken_dt = dt
                    fields = stepper(fields, t, dt, rhs)
                    dt = op.estimate_timestep(discr,
                                              stepper=model_stepper,
                                              t=0,
                                              max_eigenvalue=max_eigval[0])

                #fields = mode_filter(fields)

        finally:
            vis.close()
            logmgr.save()
            discr.close()