Example #1
0
def ilp_hedwig(input_dict):
    import hedwig

    format = input_dict['format']
    suffix = '.' + format
    bk_suffix = suffix
    if format == 'csv':
        bk_suffix = '.tsv'
    # Writes examples file
    data_file = tempfile.NamedTemporaryFile(delete=False, suffix=format)
    data_file.write(input_dict['examples'])
    data_file.close()

    # Write BK files to BK dir
    bk_dir = tempfile.mkdtemp()
    if format == 'csv':
        suffix = 'tsv'
    for bk_file in input_dict['bk_file']:
        tmp_bk_file = tempfile.NamedTemporaryFile(delete=False,
                                                  dir=bk_dir,
                                                  suffix=bk_suffix)
        tmp_bk_file.write(bk_file)
        tmp_bk_file.close()

    output_file = tempfile.NamedTemporaryFile(delete=False)
    hedwig.run({
        'bk_dir': bk_dir,
        'data': data_file.name,
        'format': format,
        'output': output_file.name,
        'mode': 'subgroups',
        'target': input_dict['target'] if 'target' in input_dict else None,
        'score': input_dict['score'],
        'negations': input_dict['negations'] == 'true',
        'alpha': float(input_dict['alpha']),
        'adjust': input_dict['adjust'],
        'FDR': float(input_dict['fdr']),
        'leaves': input_dict['leaves'] == 'true',
        'learner': 'heuristic',
        'optimalsubclass': input_dict['optimalsubclass'] == 'true',
        'uris': input_dict['uris'] == 'true',
        'beam': int(input_dict['beam']),
        'support': float(input_dict['support']),
        'depth': int(input_dict['depth']),
        'nocache': True,
        'covered': None
    })
    rules = open(output_file.name).read()
    return {'rules': rules}
Example #2
0
def ilp_hedwig(input_dict):
    import hedwig

    format = input_dict['format']
    suffix = '.' + format
    bk_suffix = suffix
    if format == 'csv':
        bk_suffix = '.tsv'
    # Writes examples file
    data_file = tempfile.NamedTemporaryFile(delete=False, suffix=format)
    data_file.write(input_dict['examples'])
    data_file.close()

    # Write BK files to BK dir
    bk_dir = tempfile.mkdtemp()
    if format == 'csv':
        suffix = 'tsv'
    for bk_file in input_dict['bk_file']:
        tmp_bk_file = tempfile.NamedTemporaryFile(delete=False, dir=bk_dir, suffix=bk_suffix)
        tmp_bk_file.write(bk_file)
        tmp_bk_file.close()

    output_file = tempfile.NamedTemporaryFile(delete=False)
    hedwig.run({
        'bk_dir': bk_dir,
        'data': data_file.name,
        'format': format,
        'output': output_file.name,
        'mode': 'subgroups',
        'target': input_dict['target'] if 'target' in input_dict else None,
        'score': input_dict['score'],
        'negations': input_dict['negations'] == 'true',
        'alpha': float(input_dict['alpha']),
        'adjust': input_dict['adjust'],
        'FDR': float(input_dict['fdr']),
        'leaves': input_dict['leaves'] == 'true',
        'learner': 'heuristic',
        'optimalsubclass': input_dict['optimalsubclass'] == 'true',
        'uris': input_dict['uris'] == 'true',
        'beam': int(input_dict['beam']),
        'support': float(input_dict['support']),
        'depth': int(input_dict['depth']),
        'nocache': True,
        'covered': None
    })
    rules = open(output_file.name).read()
    return {'rules': rules}
Example #3
0
def ilp_hedwig(input_dict):
    import hedwig

    format = input_dict['format']
    ont_format = '.tsv' if format == 'csv' else '.' + format

    examples_file = tempfile.NamedTemporaryFile(suffix='.' + format,
                                                delete=False)
    examples_file.write(input_dict['examples'])
    examples_file.close()

    bk_dir = tempfile.mkdtemp()
    for bk in input_dict['bk']:
        f = tempfile.NamedTemporaryFile(suffix=ont_format,
                                        delete=False,
                                        dir=bk_dir)
        f.write(bk)
        f.close()

    result = hedwig.run({
        'data': examples_file.name,
        'bk_dir': bk_dir,
        'adjust': input_dict['adjust'],
        'FDR': float(input_dict['fdr']),
        'format': format,
        'support': float(input_dict['sup']),
        'learner': input_dict['learner'],
        'depth': int(input_dict['depth']),
        'optimalsubclass': input_dict['optimal'] == "true",
        'beam': int(input_dict['beam']),
        'alpha': float(input_dict['alpha']),
        'score': input_dict['score_fun'],
        'uris': input_dict['uris'],
        'negations': input_dict['negations'] == "true",

        # Presets
        'leaves': True,
        'covered': None,
        'target': None,
        'mode': 'subgroups',
        'output': 'foo.txt',
        'verbose': False,
        'nocache': True
    })

    return {'rules': result}
Example #4
0
def ilp_hedwig(input_dict):
    import hedwig

    format = input_dict['format']
    ont_format = '.tsv' if format == 'csv' else '.' + format

    examples_file = tempfile.NamedTemporaryFile(suffix='.' + format, delete=False)
    examples_file.write(input_dict['examples'])
    examples_file.close()

    bk_dir = tempfile.mkdtemp()
    for bk in input_dict['bk']:
        f = tempfile.NamedTemporaryFile(suffix=ont_format, delete=False, dir=bk_dir)
        f.write(bk)
        f.close()

    result = hedwig.run({
        'data': examples_file.name,
        'bk_dir': bk_dir,
        'adjust': input_dict['adjust'],
        'FDR': float(input_dict['fdr']),
        'format': format,
        'support': float(input_dict['sup']),
        'learner': input_dict['learner'],
        'depth': int(input_dict['depth']),
        'optimalsubclass': input_dict['optimal'] == "true",
        'beam': int(input_dict['beam']),
        'alpha': float(input_dict['alpha']),
        'score': input_dict['score_fun'],
        'uris': input_dict['uris'],
        'negations': input_dict['negations'] == "true",
        
        # Presets
        'leaves': True,
        'covered': None,
        'target': None,
        'mode': 'subgroups',
        'output': 'foo.txt',
        'verbose': False,
        'nocache': True
    })

    return {'rules': result}
parser.add_argument('-b',
                    '--beam',
                    default=Defaults.BEAM_SIZE,
                    type=int,
                    help='Beam size.')

parser.add_argument('-S',
                    '--support',
                    default=Defaults.SUPPORT,
                    type=float,
                    help='Minimum support.')

parser.add_argument('-d',
                    '--depth',
                    default=Defaults.DEPTH,
                    type=int,
                    help='Maximum number of conjunctions.')

parser.add_argument('-C',
                    '--nocache',
                    action='store_true',
                    help='Don\'t cache background knowledge graph files.')

parser.add_argument("-v",
                    "--verbose",
                    help="Increase output verbosity.",
                    action="store_true")

args = parser.parse_args()
hedwig.run(args.__dict__, cli=True)
Example #6
0
    help='Max false discovery rate; applies only if \
                          "--adjust fdr" is used.',
)

parser.add_argument("-l", "--leaves", action="store_true", help="Use instance names in rule conjunctions.")

parser.add_argument(
    "-L", "--learner", choices=["heuristic", "optimal"], default="heuristic", help="Type of learner to use."
)

parser.add_argument(
    "-O",
    "--optimalsubclass",
    action="store_true",
    help="In each step the full hierarchy under a particular \
                          concept is searched",
)

parser.add_argument("-u", "--uris", action="store_true", help="Show URIs in rule conjunctions.")

parser.add_argument("-b", "--beam", default="20", type=int, help="Beam size.")

parser.add_argument("-S", "--support", default="0.1", type=float, help="Minimum support.")

parser.add_argument("-d", "--depth", default="5", type=int, help="Maximum number of conjunctions.")

parser.add_argument("-v", "--verbose", help="Increase output verbosity.", action="store_true")

args = parser.parse_args()
hedwig.run(args.__dict__, cli=True)