def test_result(self,data): mat=self.get_ConfusionMat(data) print(" ") print("-------- Confusion_matrix ---------_") print(" ") print(np.matrix(mat)) hp.get_result(mat)
def predict(id): if request.method == 'POST': return redirect('/') else: try: result, pred = get_result(id) return render_template('predict.html', result=result, pred=pred) except: return redirect('/invalid_id')
""" TP: correct prediction in the positive classes TN: correct prediction in the negative classes FP: the number of over-predictions in the signal peptide class FN: the number of under-predictions in the signal peptide class """ X_p = readdata('./dataset/test_SP.fasta_out', LENGTH, 'test') X_n_1 = readdata('./dataset/test_TM.fasta_out', LENGTH, 'test') X_n_2 = readdata('./dataset/test_NC.fasta_out', LENGTH, 'test') p_pred = model.predict(X_p) n_1_pred = model.predict(X_n_1) n_2_pred = model.predict(X_n_2) S_S, S_N = get_result(p_pred, 0) N_S_1, N_N_1 = get_result(n_1_pred, 1) N_S_2, N_N_2 = get_result(n_2_pred, 2) TP = S_S TN = N_N_1 + N_N_2 FP = N_S_1 + N_S_2 FN = S_N print() print('TP:', TP, 'TN:', TN, 'FP:', FP, 'FN:', FN) print('S: ', S_S, S_N) print('T: ', N_S_1, N_N_1) print('N: ', N_S_2, N_N_2) divv = TP * TN - FP * FN