def main():
    global gl_emotions
    global gd_setup
    global gd_config
    gd_setup, gd_config = helper.load_setup()
    gl_emotions = gd_config['emotions']
    run_main_loop(gd_setup['testSetupPath'])
    print "Task completed"
Example #2
0
def run_all():
    d_setup, __ = helper.load_setup()
    if (len(d_setup)) > 0:
        print "Creating Evaluation Setup: {0}".format(
            d_setup['evaluationSetupPath'])
        evaluation_setup_creator.main()
        print "Training Classifier: {0}".format(d_setup['classifierPath'])
        train.main()
        print "Creating Test Setup: {0}".format(d_setup['testSetupPath'])
        create_test_setup.main()
        print "Computing Metrics for: {0}".format(d_setup['classifierPath'])
        compute_metrics_calculation.main()
    print 'Task Completed'
Example #3
0
def main():
    d_setup, __ = helper.load_setup()
    ll_test_files = glob.glob(
        path.join(d_setup['evaluationSetupPath'], '*test.csv'))
    v_dest = d_setup['testSetupPath']

    helper.create_directory(v_dest)

    fold_count = 0
    for fold in ll_test_files:
        v_current_destination = path.join(v_dest, 'fold{0}'.format(fold_count))
        helper.create_directory(v_current_destination)
        copyfile(fold, path.join(v_current_destination,
                                 'all_participants.csv'))
        fold_count += 1
Example #4
0
def main():
    global emotions
    gd_setup, __ = helper.load_setup()
    emotions = gd_setup['emotionList']
    v_basepath = gd_setup['evaluationSetupPath']
    v_sourcepath = gd_setup['sourceFilesPath']
    v_folds = gd_setup['evaluationFolds']

    helper.create_directory((v_basepath))
    create_participants_list(pv_basepath=v_basepath,
                             pv_sourcepath=v_sourcepath)
    # create_participants_list(pv_basepath="test_setup2", pv_sourcepath="Data\\sorted_set_testing2")
    for i in xrange(v_folds):
        create_evaluation_setup(pv_basepath=v_basepath,
                                pv_sourcepath=v_sourcepath,
                                pv_fold_number=i,
                                limit_to_min=False)

    # Update yaml dict
    yaml_dict['basepath'] = v_basepath
    yaml_dict['sourcepath'] = v_sourcepath
    yaml_dict['folds'] = v_folds
    yaml_dict['emotions'] = emotions
    save_to_yaml(v_basepath)
Example #5
0
import cv2
import predictor
import overlay_helper
import helper
import glob
from os import path

d_setup, d_config = helper.load_setup()


def get_image_list(pv_path):
    ll_files = []
    for img_format in ('*.png', '*.jpg', '*.jpeg'):
        ll_files.extend(glob.glob(path.join(pv_path, img_format)))
    return ll_files


def process(pv_path):
    ll_image_files = get_image_list(pv_path)
    for img_path in ll_image_files:
        if '_result' in img_path:
            continue
        print img_path

        # Read image
        img = cv2.imread(img_path)

        # Predict face emotions on frame
        b_found, ll_pred, ll_pred_label, llol_pred_prob, landmarks = predictor.predict_image(
            img)
Example #6
0
def main():
    global gd_setup
    gd_setup, __ = helper.load_setup()
    train(gd_setup['evaluationSetupPath'])
    fm.json_save_file(
        path.join(gd_setup['evaluationSetupPath'], 'results.json'), json_dict)