# Defines Logistic Regression Model: model = LogisticRegression() # Trains the model model.fit(XTrain, yTrain) yPredicted = model.predict(XTest) print("Die Vorhersagegenauigkeit entspricht: ") print(100 * model.score(XTest, yTest), "%") # Prints diagram of the real test Data: plt.scatter(XTest[:, 0], XTest[:, 1], c=yTest) plt.xlabel("Number of Sport activities per month") plt.ylabel("Number of eating healthy per month") plt.title("REAL TEST DATA") plt.show() # Prints diagram of the Prediction: plt.scatter(XTest[:, 0], XTest[:, 1], c=yPredicted) plt.xlabel("Number of Sport activities per month") plt.ylabel("Number of eating healthy per month") plt.title("PREDICTED DATA") plt.show() # Prints diagramm of the real test Data with seperator plot_classifier(model, XTest, yTest, proba=True, xlabel="Number of Sport activities per month", ylabel="Number of eating healthy per month")
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0, test_size=0.25) scaler = StandardScaler() scaler.fit(X_train) X_train = scaler.transform(X_train) X_test = scaler.transform(X_test) model = SVC(kernel="poly", degree=2, coef0=1, C=1) model.fit(X_train, y_train) print(model.score(X_test, y_test)) # Trainings-Daten plotten plot_classifier(model, X_train, y_train, proba=False, xlabel="Alter", ylabel="Interesse") # Testdaten plotten plot_classifier(model, X_test, y_test, proba=False, xlabel="Alter", ylabel="Interesse")
import pandas as pd import graphviz from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from helper import plot_classifier df = pd.read_csv("classification.csv") y = df["success"].values X = df[["age", "interest"]].values X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0, test_size=0.25) model = RandomForestClassifier(criterion="entropy", n_estimators=100) # Anzahl der Bäume im Wald model.fit(X_train, y_train) plot_classifier(model, X_train, y_train, proba=True, xlabel="Alter", ylabel="Interesse") print(model.score(X_test, y_test))
random_state=0, test_size=0.4) from sklearn.neighbors import KNeighborsClassifier model = KNeighborsClassifier() model.fit(X_train, y_train) print(model.score(X_test, y_test)) from helper import plot_classifier # train data plot plot_classifier(model, X_train, y_train, proba=False, xlabel="feature", ylabel="label") # test data plot plot_classifier(model, X_test, y_test, proba=False, xlabel="feature", ylabel="label") #Task 4 varitity of classifiers ############################################################################### import os os.chdir("./")
Y = DF["desease"].values # Splitting the Set in Train and Test Data: XTRAIN, XTEST, YTRAIN, YTEST = train_test_split(X, Y, random_state=0, test_size=0.25) # creates a random forest with a maximum node-depth of 4 # and a minumum number of 3 examples per leaf MODEL = RandomForestClassifier(criterion="gini", max_depth=4, min_samples_leaf=3) MODEL = MODEL.fit(XTEST, YTEST) print(MODEL.score(XTEST, YTEST)) plot_classifier(MODEL, XTRAIN, YTRAIN, proba=True, xlabel="monthlySport", ylabel="monthlyHealthyFood") plot_classifier(MODEL, XTEST, YTEST, proba=True, xlabel="monthlySport", ylabel="monthlyHealthyFood")